Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(14): 4101-4107, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38507732

RESUMO

Among atomically thin semiconductors, CrSBr stands out as both its bulk and monolayer forms host tightly bound, quasi-one-dimensional excitons in a magnetic environment. Despite its pivotal importance for solid-state research, the exciton lifetime has remained unknown. While terahertz polarization probing can directly trace all excitons, independently of interband selection rules, the corresponding large far-field foci substantially exceed the lateral sample dimensions. Here, we combine terahertz polarization spectroscopy with near-field microscopy to reveal a femtosecond decay of paramagnetic excitons in a monolayer of CrSBr, which is 30 times shorter than the bulk lifetime. We unveil low-energy fingerprints of bound and unbound electron-hole pairs in bulk CrSBr and extract the nonequilibrium dielectric function of the monolayer in a model-free manner. Our results demonstrate the first direct access to the ultrafast dielectric response of quasi-one-dimensional excitons in CrSBr, potentially advancing the development of quantum devices based on ultrathin van der Waals magnets.

2.
Light Sci Appl ; 11(1): 151, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606348

RESUMO

Intense phase-locked terahertz (THz) pulses are the bedrock of THz lightwave electronics, where the carrier field creates a transient bias to control electrons on sub-cycle time scales. Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short, almost unipolar waveforms, at megahertz (MHz) repetition rates. Here, we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-II-aligned epitaxial semiconductor heterostructures. The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope, peak fields above 1.1 kV cm-1 and spectral components up to the mid-infrared, at a repetition rate of 4 MHz. The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times, which is unexpected from shift currents alone. Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse, also enabling ultrabroadband operation. Our unipolar emitters mark a milestone for flexibly scalable, next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients.

3.
Opt Lett ; 44(22): 5521-5524, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730097

RESUMO

We present a robust, compact pulse synthesis scheme generating intense phase-locked subcycle multi-terahertz waveforms. The ultrabroadband laser fundamental is split into two parallel branches driving optical rectification in crystals of GaSe and LiGaS2, each operated at the group velocity matching point. The coherent combination of the resulting pulses yields a continuous multi-terahertz spectrum covering 1.5 optical octaves. The corresponding 0.8-cycle electric field waveform is directly mapped out by electro-optic sampling, revealing peak fields of 15 kV/cm at a repetition rate of 0.4 MHz. The multiplexable and power scalable scheme opens the door to strong-field custom-tailored waveforms driving nonlinear optics and light wave electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...