Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(52): eabk0233, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936433

RESUMO

Heterochromatin is most often associated with eukaryotic organisms. Yet, bacteria also contain areas with densely protein-occupied chromatin that appear to silence gene expression. One nucleoid-associated silencing factor is the conserved protein Hfq. Although seemingly nonspecific in its DNA binding properties, Hfq is strongly enriched at AT-rich DNA regions, characteristic of prophages and mobile genetic elements. Here, we demonstrate that polyphosphate (polyP), an ancient and highly conserved polyanion, is essential for the site-specific DNA binding properties of Hfq in bacteria. Absence of polyP markedly alters the DNA binding profile of Hfq, causes unsolicited prophage and transposon mobilization, and increases mutagenesis rates and DNA damage­induced cell death. In vitro reconstitution of the system revealed that Hfq and polyP interact with AT-rich DNA sequences and form phase-separated condensates, a process that is mediated by the intrinsically disordered C-terminal extensions of Hfq. We propose that polyP serves as a newly identified driver of heterochromatin formation in bacteria.

2.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33884420

RESUMO

Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.


Assuntos
Engenharia de Proteínas , Proteínas , Biologia Computacional , Simulação por Computador , Proteínas/genética
3.
Nat Commun ; 12(1): 851, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558474

RESUMO

ATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy's action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Anabaena/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Azotobacter/metabolismo , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Proteínas Mutantes/metabolismo , Proteínas Periplásmicas/química , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 116(46): 23040-23049, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659041

RESUMO

The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aß40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aß40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aß40 and α-synuclein into single amyloid-prone conformations.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Cinética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregados Proteicos , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
5.
J Biol Chem ; 294(38): 14119-14134, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366733

RESUMO

The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Nat Commun ; 10(1): 659, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737390

RESUMO

Many 2-Cys-peroxiredoxins (2-Cys-Prxs) are dual-function proteins, either acting as peroxidases under non-stress conditions or as chaperones during stress. The mechanism by which 2-Cys-Prxs switch functions remains to be defined. Our work focuses on Leishmania infantum mitochondrial 2-Cys-Prx, whose reduced, decameric subpopulation adopts chaperone function during heat shock, an activity that facilitates the transition from insects to warm-blooded host environments. Here, we have solved the cryo-EM structure of mTXNPx in complex with a thermally unfolded client protein, and revealed that the flexible N-termini of mTXNPx form a well-resolved central belt that contacts and encapsulates the unstructured client protein in the center of the decamer ring. In vivo and in vitro cross-linking studies provide further support for these interactions, and demonstrate that mTXNPx decamers undergo temperature-dependent structural rearrangements specifically at the dimer-dimer interfaces. These structural changes appear crucial for exposing chaperone-client binding sites that are buried in the peroxidase-active protein.


Assuntos
Cisteína/metabolismo , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Microscopia Crioeletrônica , Leishmania infantum/metabolismo , Ligação Proteica , Dobramento de Proteína
7.
Protein Sci ; 27(11): 1893-1900, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30113093

RESUMO

De novo design of protein nano-cages has potential applications in medicine, synthetic biology, and materials science. We recently developed a modular, symmetry-based strategy for protein assembly in which short, coiled-coil sequences mediate the assembly of a protein building block into a cage. The geometry of the cage is specified by the combination of rotational symmetries associated with the coiled-coil and protein building block. We have used this approach to design well-defined octahedral and tetrahedral cages. Here, we show that the cages can be further elaborated and functionalized by the addition of another protein domain to the free end of the coiled-coil: in this case by fusing maltose-binding protein to an octahedral protein cage to produce a structure with a designed molecular weight of ~1.8 MDa. Importantly, the addition of the maltose binding protein domain dramatically improved the efficiency of assembly, resulting in ~ 60-fold greater yield of purified protein compared to the original cage design. This study shows the potential of using small, coiled-coil motifs as off-the-shelf components to design MDa-sized protein cages to which additional structural or functional elements can be added in a modular manner.


Assuntos
Proteínas Ligantes de Maltose/química , Domínios Proteicos , Multimerização Proteica , Sequência de Aminoácidos , Aminoácidos/química , Reagentes de Ligações Cruzadas/química , Escherichia coli , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/isolamento & purificação , Modelos Moleculares , Peso Molecular , Dobramento de Proteína
8.
J Mol Biol ; 430(21): 4195-4208, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30130556

RESUMO

Inorganic polyphosphate (polyP) constitutes one of the most conserved and ubiquitous molecules in biology. Recent work in bacteria demonstrated that polyP increases oxidative stress resistance by preventing stress-induced protein aggregation and promotes biofilm formation by stimulating functional amyloid formation. To gain insights into these two seemingly contradictory functions of polyP, we investigated the effects of polyP on the folding model lactate dehydrogenase. We discovered that the presence of polyP during the thermal unfolding process stabilizes folding intermediates of lactate dehydrogenase as soluble micro-ß-aggregates with amyloid-like properties. Size and heterogeneity of the oligomers formed in this process were dependent on the polyP chain length, with longer chains forming smaller, more homogenous complexes. This ability of polyP to stabilize thermally unfolded proteins even upon exposure to extreme temperatures appears to contribute to the observed resistance of uropathogenic Escherichia coli toward severe heat shock treatment. These results suggest that the working mechanism of polyP is the same for both soluble and amyloidogenic proteins, with the ultimate outcome likely being determined by a combination of polyP chain length and the client protein itself. They help to explain how polyP can simultaneously function as general stress-protective chaperone and instigator of amyloidogenic processes in vivo.


Assuntos
Proteínas Amiloidogênicas/química , Polifosfatos/química , Multimerização Proteica , Desdobramento de Proteína , Proteínas Amiloidogênicas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , L-Lactato Desidrogenase/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...