Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Water Works Assoc ; 109(12): E535-E547, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29681646

RESUMO

The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.

2.
J Environ Manage ; 187: 1-7, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865123

RESUMO

Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s-1 (1.7 ft s-1), as well as free chlorine (5 and 25 mg L-1), monochloramine (25 mg L-1), chlorine dioxide (5 and 25 mg L-1), ozone (2.0 mg L-1), peracetic acid 25 mg L-1) and acidified nitrite (0.1 mol L-1 at pH 2 and 3), all followed by flushing at 0.3 m s-1 (1 ft s-1). Flushing alone reduced the adhered spores by 0.5 and 2.0 log10 from iron and cement-mortar, respectively. Log10 reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L-1, although spores were undetectable on the iron surface during disinfection at 25 mg L-1. Acidified nitrite (pH 2, 0.1 mol L-1) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log10 removal from cement-mortar at 5 and 25 mg L-1. The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log10 on cement-mortar.


Assuntos
Bacillus/efeitos dos fármacos , Descontaminação/métodos , Desinfetantes/farmacologia , Desinfecção/métodos , Água Potável/microbiologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Cloraminas/farmacologia , Compostos Clorados/farmacologia , Contagem de Colônia Microbiana , Ferro , Óxidos/farmacologia , Ozônio/farmacologia , Ácido Peracético/farmacologia , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...