Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Breathe (Sheff) ; 20(1): 230183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38746906

RESUMO

The Translational Science Working Group at the European Respiratory Society (ERS) aims to bridge the gap between basic and clinical science by providing a platform where scientists, clinicians and experts in the respiratory field can actively shape translational research. For the 2023 Congress, dedicated translational science sessions were created and sessions of interest to many assemblies from the clinical and the scientific point of view were tagged as translational sessions, attracting clinical and scientific experts to the same room to discuss relevant topics and strengthening translational efforts among all ERS assemblies.

2.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759700

RESUMO

The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.


Assuntos
Lisina , Complexo de Endopeptidases do Proteassoma , Ligantes , Endopeptidases , Epitopos , Probabilidade , Antígenos HLA-A
3.
Breathe (Sheff) ; 19(2): 230107, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37492348

RESUMO

This article provides an overview of the reasons to attend the 2023 ERS Congress, including a summary of the ECM session and the NEXT programme. https://bit.ly/46ghP4g.

4.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385655

RESUMO

BACKGROUND: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS: We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS: Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION: Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Linfócitos T CD8-Positivos , Antivirais , Fumar Cigarros/efeitos adversos , Antígenos de Histocompatibilidade Classe I/metabolismo , Citocinas , Epitopos , Imunidade
5.
Nat Cancer ; 4(5): 629-647, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37217651

RESUMO

Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apresentação de Antígeno , Neoplasias Pulmonares/patologia , Medicina de Precisão , Complexo de Endopeptidases do Proteassoma/metabolismo , Microambiente Tumoral
6.
EMBO J ; 42(8): e110597, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36912165

RESUMO

The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos , DNA Mitocondrial , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo
7.
Breathe (Sheff) ; 18(2): 220064, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36337125

RESUMO

An overview of what to expect from the European Respiratory Society (ERS) International Congress 2022, including the top picks of the International Congress Programme Committee and a summary of the Early Career Member session. https://bit.ly/3tNTlgY.

8.
Nat Neurosci ; 25(12): 1608-1625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424432

RESUMO

Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Humanos , Animais , Gotículas Lipídicas , Peixe-Zebra , Proteínas de Ligação a DNA , Regeneração
9.
Biomolecules ; 12(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36009043

RESUMO

Proteasomes comprise a family of proteasomal complexes essential for maintaining protein homeostasis. Accordingly, proteasomes represent promising therapeutic targets in multiple human diseases. Several proteasome inhibitors are approved for treating hematological cancers. However, their side effects impede their efficacy and broader therapeutic applications. Therefore, understanding the biology of the different proteasome complexes present in the cell is crucial for developing tailor-made inhibitors against specific proteasome complexes. Here, we will discuss the structure, biology, and function of the alternative Proteasome Activator 200 (PA200), also known as PSME4, and summarize the current evidence for its dysregulation in different human diseases. We hereby aim to stimulate research on this enigmatic proteasome regulator that has the potential to serve as a therapeutic target in cancer.


Assuntos
Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma , Citoplasma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico
10.
Biomolecules ; 12(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35740881

RESUMO

The anti-diabetic drug metformin is currently tested for the treatment of hematological and solid cancers. Proteasome inhibitors, e.g., Bortezomib, are approved for the treatment of multiple myeloma and mantle cell lymphoma but are also studied for lung cancer therapy. We here analyzed the interaction of the two drugs in two cell lines, namely the mantle cell lymphoma Jeko-1 and the non-small-cell lung cancer (NSCLC) H1299 cells, using proliferation and survival assays, native-gel analysis for proteasome activity and assembly, and expression analysis of proteasome assembly factors. Our results demonstrate that metformin treatment induces resistance of cancer cells to the proteasome inhibitor Bortezomib by impairing the activity and assembly of the 26S proteasome complexes. These effects of metformin on proteasome inhibitor sensitivity in cancer cells are of potential relevance for patients that receive proteasome inhibitor therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma de Célula do Manto , Metformina , Adulto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Ácidos Borônicos/farmacologia , Bortezomib/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia
11.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34561290

RESUMO

BACKGROUND: Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in chronic obstructive pulmonary disease (COPD), thereby affecting immune cell responses. METHODS: We analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMCs) isolated from healthy male young smokers as well as from patients with severe COPD and compared them with matching controls. RESULTS: Proteasome expression was upregulated in COPD patients as assessed by quantitative reverse transcriptase-PCR and mass spectrometry-based proteomic analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modelling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro. Inhibition of the immunoproteasome reduced pro-inflammatory cytokine expression in COPD-derived blood immune cells. CONCLUSIONS: Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.


Assuntos
Complexo de Endopeptidases do Proteassoma , Doença Pulmonar Obstrutiva Crônica , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Fumantes
12.
Cells ; 10(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34943847

RESUMO

Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.


Assuntos
Inflamação/sangue , Inflamação/imunologia , Complexo de Endopeptidases do Proteassoma/sangue , Complexo de Endopeptidases do Proteassoma/imunologia , Fatores Etários , Células Sanguíneas/enzimologia , Doença Crônica , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Sondas Moleculares/metabolismo , Fatores Sexuais
13.
Front Physiol ; 12: 628288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267671

RESUMO

COVID-19 is a disease caused by a new coronavirus SARS-CoV-2, primarily impacting the respiratory system. COVID-19 can result in mild illness or serious disease leading to critical illness and requires admission to ICU due to respiratory failure. There is intense discussion around potential factors predisposing to and protecting from COVID-19. The immune response and the abnormal respiratory function with a focus on respiratory function testing in COVID-19 patients will be at the center of this Perspective article of the Frontiers in Physiology Series on "The Tribute of Physiology for the Understanding of COVID-19 Disease." We will discuss current advances and provide future directions and present also our perspective in this field.

14.
STAR Protoc ; 2(2): 100526, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027484

RESUMO

This protocol describes an easy and reliable in-gel proteasome assay to quantify the activity and composition of different proteasome complexes in cells and tissues. The assay works well with limited amounts of total cell protein lysates. Although this assay is optimized specifically for the proteasome chymotrypsin-like activity, it can be expanded to other proteasome activities as well. Using antibodies that detect distinct proteasome subunits or regulators, we can determine the composition and relative quantity of active proteasome complexes. For complete details on the use and execution of this protocol, please refer to Meul et al. (2020).


Assuntos
Técnicas Citológicas/métodos , Complexo de Endopeptidases do Proteassoma , Células A549 , Western Blotting , Células Cultivadas , Humanos , Eletroforese em Gel de Poliacrilamida Nativa , Complexo de Endopeptidases do Proteassoma/análise , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo
15.
Cell Rep ; 32(8): 108059, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846138

RESUMO

The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications.


Assuntos
Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos
16.
Eur Respir Rev ; 29(156)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32641389

RESUMO

Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g. cellular senescence), as a "first hit" that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as "second hits" which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, "lung ageing".


Assuntos
Envelhecimento , Fibrose Pulmonar Idiopática/etiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Estresse Fisiológico , Senescência Celular , Homeostase , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Oxirredução , Estresse Oxidativo , Proteostase , Doença Pulmonar Obstrutiva Crônica/metabolismo
17.
Cell Prolif ; 53(6): e12828, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32391938

RESUMO

Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.


Assuntos
Exossomos/genética , Neoplasias Pulmonares/genética , MicroRNAs/fisiologia , Biomarcadores Tumorais , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Neovascularização Patológica
18.
Adv Exp Med Biol ; 1233: 55-100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274753

RESUMO

The proteasome is involved in the regulation of all cellular pathways and consequently plays a central role in the control of cellular homeostasis. Together with its regulators, it is at the frontline, both as an actor and as a target, in human health and when homeostasis is disturbed in disease. In this review, we aim to provide an overview of the many levels at which the functions of the proteasome and its regulators can be regulated to cope with cellular needs or are altered in pathological conditions.


Assuntos
Doença , Saúde , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
19.
Pharmacol Ther ; 211: 107526, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173559

RESUMO

The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.


Assuntos
Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Animais , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
20.
ERJ Open Res ; 6(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32154289

RESUMO

In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...