Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Hum Reprod ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775335

RESUMO

STUDY QUESTION: Does the chemokine/chemokine receptor axis, involved in immune cell trafficking, contribute to the pathology of testicular inflammation and how does activin A modulate this network? SUMMARY ANSWER: Testicular chemokines and their receptors (especially those essential for trafficking of monocytes) are elevated in orchitis, and activin A modulates the expression of the chemokine/chemokine receptor network to promote monocyte/macrophage and T cell infiltration into the testes, causing extensive tissue damage. WHAT IS KNOWN ALREADY: The levels of CC motif chemokine receptor (CCR)2 and its ligand CC motif chemokine ligand (CCL)2 are increased in experimental autoimmune orchitis (EAO) compared with healthy testes, and mice deficient in CCR2 are protected from EAO-induced tissue damage. Activin A induces CCR2 expression in macrophages, promoting their migration. Moreover, there is a positive correlation between testicular activin A concentration and the severity of autoimmune orchitis. Inhibition of activin A activity by overexpression of follistatin (FST) reduces EAO-induced testicular damage. STUDY DESIGN, SIZE, DURATION: EAO was induced in 10-12-week-old male C57BL/6J (wild-type; WT) and B6.129P2-Ccr2tm1Mae/tm1Mae (Ccr2-/-) mice (n = 6). Adjuvant (n = 6) and untreated (n = 6) age-matched control mice were also included. Testes were collected at 50 days after the first immunization with testicular homogenate in complete Freund's adjuvant. In another experimental setup, WT mice were injected with a non-replicative recombinant adeno-associated viral vector carrying a FST315-expressing gene cassette (rAAV-FST315; n = 7-9) or an empty control vector (n = 5) 30 days prior to EAO induction. Appropriate adjuvant (n = 4-5) and untreated (n = 4-6) controls were also examined. Furthermore, human testicular biopsies exhibiting focal leukocytic infiltration and impaired spermatogenesis (n = 17) were investigated. Biopsies showing intact spermatogenesis were included as controls (n = 9). Bone-marrow-derived macrophages (BMDMs) generated from WT mice were treated with activin A (50 ng/ml) for 6 days. Activin-A-treated or untreated BMDMs were then co-cultured with purified mouse splenic T cells for two days to assess chemokine and cytokine production. PARTICIPANTS/MATERIALS, SETTING, METHODS: Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of chemokines in total testicular RNA collected from mice. Immunofluorescence staining was used to detect activin A, F4/80, and CD3 expression in mouse testes. The expression of chemokine/chemokine-receptor-encoding genes was examined in human testicular biopsies by qRT-PCR. Correlations between chemokine expression levels and either the immune cell infiltration density or the mean spermatogenesis score were analyzed. Immunofluorescence staining was used to evaluate the expression of CD68 and CCR2 in human testicular biopsies. RNA isolated from murine BMDMs was used to characterize these cells in terms of their chemokine/chemokine receptor expression levels. Conditioned media from co-cultures of BMDMs and T cells were collected to determine chemokine levels and the production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interferon (IFN)-γ by T cells. MAIN RESULTS AND THE ROLE OF CHANCE: Induction of EAO in the testes of WT mice increased the expression of chemokine receptors such as Ccr1 (P < 0.001), Ccr2 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.0001), CXC motif chemokine receptor (Cxcr)3 (P < 0.01), and CX3C motif chemokine receptor (Cx3cr)1 (P < 0.001), as well as that of most of their ligands. Ccr2 deficiency reversed some of the changes associated with EAO by reducing the expression of Ccr1 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.01), Cxcr3 (P < 0.001), and Cx3cr1 (P < 0.0001). Importantly, the biopsies showing impaired spermatogenesis and concomitant focal leukocytic infiltration exhibited higher expression of CCL2 (P < 0.01), CCR1 (P < 0.05), CCR2 (P < 0.001), and CCR5 (P < 0.001) than control biopsies with no signs of inflammation and intact spermatogenesis. The gene expression of CCR2 and its ligand CCL2 correlated positively with the immune cell infiltration density (P < 0.05) and negatively with the mean spermatogenesis score (P < 0.001). Moreover, CD68+ macrophages expressing CCR2 were present in human testes with leukocytic infiltration with evidence of tubular damage. Treatment of BMDMs, as surrogates for testicular macrophages, with activin A increased their expression of Ccr1, Ccr2, and Ccr5 while reducing their expression of Ccl2, Ccl3, Ccl4, Ccl6, Ccl7 Ccl8, and Ccl12. These findings were validated in vivo, by showing that inhibiting activin A activity by overexpressing FST in EAO mice decreased the expression of Ccr2 (P < 0.05) and Ccr5 (P < 0.001) in the testes. Interestingly, co-culturing activin-A-treated BMDMs and T cells reduced the levels of CCL2 (P < 0.05), CCL3/4 (P < 0.01), and CCL12 (P < 0.05) in the medium and attenuated the production of TNF (P < 0.05) by T cells. The majority of cells secreting activin A in EAO testes were identified as macrophages. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: BMDMs were used as surrogates for testicular macrophages. Hence, results obtained from the in vitro experiments might not be fully representative of the situation in the testes in vivo. Moreover, since total RNA was extracted from the testicular tissue to examine chemokine expression, the contributions of individual cell types as producers of specific chemokines may have been overlooked. WIDER IMPLICATIONS OF THE FINDINGS: Our data indicate that macrophages are implicated in the development and progression of testicular inflammation by expressing CCR2 and activin A, which ultimately remodel the chemokine/chemokine receptor network and recruit other immune cells to the site of inflammation. Consequently, inhibition of CCR2 or activin A could serve as a potential therapeutic strategy for reducing testicular inflammation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Research Training Group in 'Molecular pathogenesis on male reproductive disorders', a collaboration between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK1871/1-2) funded by the Deutsche Forschungsgemeinschaft and Monash University, a National Health and Medical Research Council of Australia Ideas Grant (1184867), and the Victorian Government's Operational Infrastructure Support Programme. The authors declare no competing financial interests.

2.
Andrology ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497291

RESUMO

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.

3.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301068

RESUMO

Acute bacterial orchitis (AO) is a prevalent cause of intrascrotal inflammation, often resulting in sub- or infertility. A frequent cause eliciting AO is uropathogenic Escherichia coli (UPEC), a gram negative pathovar, characterized by the expression of various iron acquisition systems to survive in a low-iron environment. On the host side, iron is tightly regulated by iron regulatory proteins 1 and 2 (IRP1 and -2) and these factors are reported to play a role in testicular and immune cell function; however, their precise role remains unclear. Here, we showed in a mouse model of UPEC-induced orchitis that the absence of IRP1 results in less testicular damage and a reduced immune response. Compared with infected wild-type (WT) mice, testes of UPEC-infected Irp1-/- mice showed impaired ERK signaling. Conversely, IRP2 deletion led to a stronger inflammatory response. Notably, differences in immune cell infiltrations were observed among the different genotypes. In contrast with WT and Irp2-/- mice, no increase in monocytes and neutrophils was detected in testes of Irp1-/- mice upon UPEC infection. Interestingly, in Irp1-/- UPEC-infected testes, we observed an increase in a subpopulation of macrophages (F4/80+CD206+) associated with antiinflammatory and wound-healing activities compared with WT. These findings suggest that IRP1 deletion may protect against UPEC-induced inflammation by modulating ERK signaling and dampening the immune response.


Assuntos
Proteína 1 Reguladora do Ferro , Orquite , Masculino , Humanos , Camundongos , Animais , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Orquite/microbiologia , Inflamação , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo
4.
J Reprod Immunol ; 161: 104169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016190

RESUMO

Testicular macrophages (TM) are critical for the function of the testis by regulating homeostasis and inflammatory responses. However, the mechanisms by which TM fulfil these roles remain elusive. In this study, we explored the impact of two key testicular microenvironmental factors, namely 25-hydroxycholesterol (25HC), an oxysterol related to sex hormones and macrophage colony-stimulating factor (M-CSF), a factor crucial for macrophage survival and differentiation, on the regulation of the TM phenotype. Specifically, we examined their role in controlling the expression of the transcription factor interferon regulatory factor 7 (Irf7), a factor critical for maintaining the alternative macrophage phenotype. To achieve this, we used an in vitro bone marrow-derived macrophage (BMDM) model as a surrogate for TM to investigate the roles of 25HC and M-CSF in regulating the expression of Irf7 during the polarization of murine TM. M-CSF was identified as the main regulator of Irf7 expression, while 25HC production is a consequence of Irf7 activation in BMDM. In turn, 25HC plays a role in a negative feedback loop on the expression levels of Irf7 in BMDM. Using flow cytometry in Irf7-/- mouse testis the CD64loMHChi TM subpopulation was found to be decreased. Together with lower IL-10 protein levels in Irf7-/- TM this indicates a shift towards an M1-like macrophage profile. In summary, our data indicates that M-CSF could act as an inducer of high Irf7 expression levels in the mouse testis. However, the exact role of the high 25HC concentration in the testis in maintaining the local immune milieu still needs further study.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Testículo , Masculino , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Regulador 7 de Interferon , Macrófagos , Fatores de Transcrição
5.
Reprod Fertil Dev ; 35(11): 589-600, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393946

RESUMO

CONTEXT: The Pxt1 gene encodes a male germ cell-specific protein and its overexpression results in male germ cell degeneration and male infertility in transgenic mice. AIMS: The analysis of the function of Pxt1 during mouse spermatogenesis. METHODS: The phenotype of Pxt1 knockout mice was characterised by testicular histology, assessment of semen parameters including sperm motility, and DNA fragmentation by flow cytometry. Gene expression was analysed using RT-PCR. Fertility of mutants was checked by standard breeding and competition breeding tests. KEY RESULTS: In Pxt1 -/- mice, a strong increase in the sperm DNA fragmentation index (DFI) was observed, while other sperm parameters were comparable to those of control animals. Despite enhanced DFI, mutants were fertile and able to mate in competition with wild type males. CONCLUSIONS: Pxt1 induces cell death; thus, the higher sperm DFI of mice with targeted deletion of Pxt1 suggests some function for this gene in the elimination of male germ cells with chromatin damage. IMPLICATIONS: Ablation of mouse Pxt1 results in enhanced DFI. In humans, the homologous PXT1 gene shares 74% similarity with the mouse gene; thus, it can be considered a candidate for mutation screening in patients with increased DFI.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Cromatina , DNA , Fragmentação do DNA , Infertilidade Masculina/patologia , Camundongos Knockout , Camundongos Transgênicos , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia
6.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515584

RESUMO

The epididymis functions as transition zone for post-testicular sperm maturation and storage and faces contrasting immunological challenges, i.e. tolerance towards spermatozoa vs. reactivity against pathogens. Thus, normal organ function and integrity relies heavily on a tightly controlled immune balance. Previous studies described inflammation-associated tissue damage solely in the distal regions (corpus, cauda), but not in the proximal regions (initial segment, caput). To understand the observed region-specific immunity along the epididymal duct, we have used an acute bacterial epididymitis mouse model and analyzed the disease progression. Whole transcriptome analysis using RNAseq 10 days post infection showed a pro-inflammatory environment within the cauda, while the caput exhibited only minor transcriptional changes. High-dimensional flow cytometry analyses revealed drastic changes in the immune cell composition upon infection with uropathogenic Escherichia coli. A massive influx of neutrophils and monocytes was observed exclusively in distal regions and was associated with bacterial appearance and tissue alterations. In order to clarify the reasons for the region-specific differences in the intensity of immune responses, we investigated the heterogeneity of resident immune cell populations under physiological conditions by scRNASeq analysis of extravascular CD45+ cells. Twelve distinct immune cell subsets were identified, displaying substantial differences in distribution along the epididymis as further assessed by flow cytometry and immunofluorescence staining. Macrophages constituted the majority of resident immune cells and were further separated in distinct subgroups based on their transcriptional profile, tissue location and monocyte-dependence. Crucially, the proximal and distal regions showed striking differences in their immunological landscapes. These findings indicate that resident immune cells are strategically positioned along the epididymal duct, potentially providing different immunological environments required for addressing the contrasting immunological challenges and thus, preserving tissue integrity and organ function.


Assuntos
Epididimo , Sêmen , Camundongos , Masculino , Animais , Maturação do Esperma , Espermatozoides , Testículo
7.
Cell Mol Life Sci ; 79(12): 602, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434305

RESUMO

Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.


Assuntos
Orquite , Masculino , Humanos , Camundongos , Animais , Folistatina , Fibronectinas , Macrófagos , Fibrose , Inflamação , Receptores CCR2/genética
8.
Nat Commun ; 13(1): 6936, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376288

RESUMO

Human infections with H7N9 avian influenza A virus that emerged in East China in 2013 and caused high morbidity rates were more frequently detected in men than in women over the last five epidemic waves. However, molecular markers associated with poor disease outcomes in men are still unknown. In this study, we systematically analysed sex hormone and cytokine levels in males and females with laboratory-confirmed H7N9 influenza in comparison to H7N9-negative control groups as well as laboratory-confirmed seasonal H1N1/H3N2 influenza cases (n = 369). Multivariable analyses reveal that H7N9-infected men present with considerably reduced testosterone levels associated with a poor outcome compared to non-infected controls. Regression analyses reveal that testosterone levels in H7N9-infected men are negatively associated with the levels of several pro-inflammatory cytokines, such as IL-6 and IL-15. To assess whether there is a causal relationship between low testosterone levels and avian H7N9 influenza infection, we used a mouse model. In male mice, we show that respiratory H7N9 infection leads to a high viral load and inflammatory cytokine response in the testes as well as a reduction in pre-infection plasma testosterone levels. Collectively, these findings suggest that monitoring sex hormone levels may support individualized management for patients with avian influenza infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Humanos , Masculino , Feminino , Animais , Camundongos , Vírus da Influenza A Subtipo H3N2 , Testosterona , Citocinas , China/epidemiologia
9.
Front Endocrinol (Lausanne) ; 13: 897029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574022

RESUMO

Infection and inflammation are relevant entities of male reproductive disorders that can lead to sub-/infertility. Associated damage of the testis of affected men and in rodent models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and reduced androgen levels. Negative effects on spermatogenesis are thought to be elicited by oxidative stress sustained mostly by increased levels of ROS and pro-inflammatory cytokines. Under normal conditions these cytokines have physiological functions. However, increased levels as seen in inflammation and infection, but also in obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary, there is mounting evidence that the activation of inflammatory pathways is a rather common feature in various forms of male testicular disorders that extends beyond established infectious/inflammatory cues. This mini review will focus on relevant entities and the mechanisms of how a dysbalance of local testicular factors contributes to disturbances of spermatogenesis and steroidogenesis.


Assuntos
Espermatogênese , Testículo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Espermatozoides/metabolismo , Testículo/metabolismo
10.
J Reprod Immunol ; 151: 103618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378491

RESUMO

The cytokine activin A is expressed throughout testicular development and is a critical regulator of macrophage function, but its effects on the testicular macrophages are not well-defined. Macrophage distribution and gene transcript levels were examined in testes of adult mice with reduced levels of either activin A (Inhba+/-), or its binding protein, follistatin (TghFST315). Macrophages were identified using F4/80 immunohistochemistry and enumerated by morphometry. Transcript levels were measured in testis extracts by qRT-PCR and Fluidigm ™ analyses. Interstitial macrophages were twice as numerous as peritubular macrophages in Inhba+/- and TghFST315 mice and their littermate controls. Macrophage numbers were significantly reduced in all regions of the Inhba+/- testis, and the volume density of peritubular and subcapsular macrophages was significantly reduced compared to littermate controls (by 52.9% and 36.3% respectively). Transcripts encoding macrophage chemokines, Csf1 and Ccl2, and receptor Csf1r, were elevated (by 35%, 44% and 27% respectively) in Inhba+/- testes, but Cx3cl1 and their receptors, Cx3cr1 and Ccr2, were not altered. Transcripts encoding MHC class II antigens and the co-stimulatory molecule Cd86, also increased (by 32% and 60% respectively), but other co-stimulatory molecules Cd80 and Cd274, and the scavenger receptor Mrc1 (CD206), were unaffected. In the follistatin-deficient testes, macrophage numbers and most macrophage-specific transcripts were not significantly affected, but Mrc1 expression was reduced by 35%. These data indicate that activin A maintains macrophage numbers, but selectively inhibits the levels of key transcripts associated with macrophage antigen-presentation, recruitment and differentiation in the adult mouse testis.


Assuntos
Folistatina , Testículo , Ativinas , Animais , Proteínas de Transporte/metabolismo , Folistatina/genética , Folistatina/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos
11.
Andrology ; 10(1): 190-201, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415685

RESUMO

BACKGROUND: Immunoregulatory genes encoding activin A (Inhba) and B (Inhbb), and indolamine 2,3-dioxygenase-1 (Ido1) are highly expressed in the murine caput epididymidis, which also has a network of intraepithelial mononuclear phagocytes. This environment is postulated to promote immunological tolerance to epididymal sperm. The factors regulating the immunoregulatory agents in the epididymal caput are poorly understood. OBJECTIVES: This study aimed to investigate the potential role of testicular lumicrine factors in regulating activin and other immune-related genes in the caput epididymidis. MATERIALS AND METHODS: The efferent ducts in adult C57/Bl6 mice were exposed and ligated bilaterally. Serum and tissues were collected seven days later. Animals with bilateral sham ligation and animals with no ligations (collectively referred to as the "intact" group) were used as controls. RESULTS: Pressure-induced seminiferous epithelial damage due to intratubular fluid accumulation was observed in all ligated testes. Testicular inhibin was significantly increased and testosterone was elevated in some animals following bilateral ligation, but serum testosterone, serum LH, and serum inhibin were normal. Ligation caused epithelial regression in the initial segment, with similar but less severe effects in other caput segments. Activin A staining by immunohistochemistry in the epithelium was reduced in bilateral ligation, particularly in the initial segment, with moderately reduced staining intensity in the rest of the caput. Inhba expression within the caput was not significantly affected by bilateral ligation, but Inhbb was reduced by more than 60%. Transcripts encoding the macrophage-specific receptor Cx3cr1 were significantly reduced following bilateral ligation, but other immune cell markers, Ido1, and inflammatory genes were unaffected. CONCLUSION: These data indicate that testicular lumicrine secretion regulates several genes that are preferentially expressed in the initial segment, but has marginal effects on genes such as those encoding activin A and IDO1, which are expressed more widely in the caput.


Assuntos
Ativinas/imunologia , Epididimo/imunologia , Tolerância Imunológica/genética , Inibinas/imunologia , Testículo/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Espermatozoides/imunologia
12.
Trends Immunol ; 43(1): 51-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848166

RESUMO

Macrophages comprise a heterogeneous immune cell population and display niche-specific phenotypes and functions in almost all organs. Testicular macrophages (TMs) perform essential immune and non-immune functions in the mammalian male gonads. Here, we discuss the most recent findings on TM ontogeny, heterogeneity, and function under steady state and inflammatory conditions. We also highlight new discoveries regarding the functions of macrophages during bacterial and viral infections of the testes and how macrophages may indirectly help the establishment of a reservoir through virus seeding. Understanding TM function and macrophage-related mechanisms of disease might assist in developing new opportunities for intervention in male infertility.


Assuntos
Macrófagos , Testículo , Animais , Humanos , Masculino , Mamíferos
13.
Emerg Microbes Infect ; 10(1): 1807-1818, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402750

RESUMO

Male sex was repeatedly identified as a risk factor for death and intensive care admission. However, it is yet unclear whether sex hormones are associated with disease severity in COVID-19 patients. In this study, we analysed sex hormone levels (estradiol and testosterone) of male and female COVID-19 patients (n = 50) admitted to an intensive care unit (ICU) in comparison to control non-COVID-19 patients at the ICU (n = 42), non-COVID-19 patients with the most prevalent comorbidity (coronary heart diseases) present within the COVID-19 cohort (n = 39) and healthy individuals (n = 50). We detected significantly elevated estradiol levels in critically ill male COVID-19 patients compared to all control cohorts. Testosterone levels were significantly reduced in critically ill male COVID-19 patients compared to control cohorts. No statistically significant differences in sex hormone levels were detected in critically ill female COVID-19 patients, albeit similar trends towards elevated estradiol levels were observed. Linear regression analysis revealed that among a broad range of cytokines and chemokines analysed, IFN-γ levels are positively associated with estradiol levels in male and female COVID-19 patients. Furthermore, male COVID-19 patients with elevated estradiol levels were more likely to receive ECMO treatment. Thus, we herein identified that disturbance of sex hormone metabolism might present a hallmark in critically ill male COVID-19 patients.


Assuntos
COVID-19/mortalidade , COVID-19/patologia , Estradiol/sangue , Testosterona/sangue , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Cuidados Críticos , Estado Terminal , Oxigenação por Membrana Extracorpórea , Feminino , Humanos , Hipogonadismo/patologia , Unidades de Terapia Intensiva , Interferon gama/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Distribuição por Sexo
14.
Cell Mol Life Sci ; 78(7): 3621-3635, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33507326

RESUMO

Galectin 3 is a multifunctional lectin implicated in cellular proliferation, differentiation, adhesion, and apoptosis. This lectin is broadly expressed in testicular somatic cells and germ cells, and is upregulated during testicular development. Since the role of galectin 3 in testicular function remains elusive, we aimed to characterize the role of galectin 3 in testicular physiology. We found that galectin 3 transgenic mice (Lgals3-/-) exhibited significantly decreased testicular weight in adulthood compared to controls. The transgenic mice also exhibited a delay to the first wave of spermatogenesis, a decrease in the number of germ cells at postnatal day 5 (P5) and P15, and defective Sertoli cell maturation. Mechanistically, we found that Insulin-like-3 (a Leydig cell marker) and enzymes involved in steroid biosynthesis were significantly upregulated in adult Lgals3-/- testes. These observations were accompanied by increased serum testosterone levels. To determine the underlying causes of the testicular atrophy, we monitored cellular apoptosis. Indeed, adult Lgals3-/- testicular cells exhibited an elevated apoptosis rate that is likely driven by downregulated Bcl-2 and upregulated Bax and Bak expression, molecules responsible for live/death cell balance. Moreover, the percentage of testicular macrophages within CD45+ cells was decreased in Lgals3-/- mice. These data suggest that galectin 3 regulates spermatogenesis initiation and Sertoli cell maturation in part, by preventing germ cells from undergoing apoptosis and regulating testosterone biosynthesis. Going forward, understanding the role of galectin 3 in testicular physiology will add important insights into the factors governing the development of germ cells and steroidogenesis and delineate novel biomarkers of testicular function.


Assuntos
Apoptose , Galectina 3/fisiologia , Células Intersticiais do Testículo/patologia , Células de Sertoli/patologia , Espermatogênese , Espermatozoides/patologia , Animais , Hormônio Foliculoestimulante/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Testosterona/metabolismo
15.
J Infect Dis ; 223(6): 1040-1051, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33453118

RESUMO

Urinary tract infections are common and costly diseases affecting millions of people. Uropathogenic Escherichia coli (UPEC) is a primary cause of these infections and has developed multiple strategies to avoid the host immune response. Here, we dissected the molecular mechanisms underpinning UPEC inhibition of inflammatory cytokine in vitro and in vivo. We found that UPEC infection simulates nuclear factor-κB activation but does not result in transcription of cytokine genes. Instead, UPEC-mediated suppression of the metabolic enzyme ATP citrate lyase results in decreased acetyl-CoA levels, leading to reduced H3K9 histone acetylation in the promotor region of CXCL8. These effects were dependent on the UPEC virulence factor α-hemolysin and were reversed by exogenous acetate. In a murine cystitis model, prior acetate supplementation rapidly resolved UPEC-elicited immune responses and improved tissue recovery. Thus, upon infection, UPEC rearranges host cell metabolism to induce chromatin remodeling processes that subvert expression of host innate immune response genes.


Assuntos
Citocinas/imunologia , Infecções por Escherichia coli , Proteínas Hemolisinas , Infecções Urinárias , Escherichia coli Uropatogênica , Acetilação , Animais , Citocinas/genética , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Camundongos , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/metabolismo , Fatores de Virulência/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372158

RESUMO

Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.


Assuntos
Infertilidade Masculina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Epididimo/imunologia , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Testículo/imunologia , Testículo/metabolismo
17.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33328325

RESUMO

Macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT) are widely expressed pro-inflammatory cytokines with chemokine-like functions that coordinate a wide spectrum of biological activities, such as migration. Here, we biotin-tagged intracellular MIF/D-DT in vivo to identify important cytosolic interactors and found a plethora of actin cytoskeleton-associated proteins. Although the receptor complex between CD74 and CD44 (CD74/CD44) is essential for signalling transduction in fibroblasts via extracellular MIF/D-DT, our interactome data suggested direct effects. We, thus, investigated whether MIF/D-DT can modulate cell migration independently of CD74/CD44. To distinguish between receptor- and non-receptor-mediated motility, we used fibroblasts that are either deficient or that express CD74/CD44 proteins, and treated them with recombinant MIF/D-DT. Interestingly, only MIF could stimulate chemokinesis in the presence or absence of CD74/CD44. The pro-migratory effects of MIF depended on lipid raft/caveolae-mediated but not clathrin-mediated endocytosis, on its tautomerase activity and, probably, on its thiol protein oxidoreductase activity. As MIF treatment restrained actin polymerisation in vitro, our findings establish a new intracellular role for MIF/D-DT in driving cell motility through modulation of the actin cytoskeleton.


Assuntos
Movimento Celular , Fatores Inibidores da Migração de Macrófagos , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Células COS , Membrana Celular , Chlorocebus aethiops , Fibroblastos , Células HEK293 , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Receptores de Hialuronatos , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Células NIH 3T3 , Transdução de Sinais
18.
Front Immunol ; 11: 599594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329594

RESUMO

The epididymis is a tubular structure connecting the vas deferens to the testis. This organ consists of three main regions-caput, corpus, and cauda-that face opposing immunological tasks. A means of combating invading pathogens is required in the distally located cauda, where there is a risk of ascending bacterial infections originating from the urethra. Meanwhile, immune tolerance is necessary at the caput, where spermatozoa with immunogenic neo-antigens originate from the testis. Consistently, when challenged with live bacteria or inflammatory stimuli, the cauda elicits a much stronger immune response and inflammatory-inflicted damage than the caput. At the cellular level, a role for diverse and strategically positioned mononuclear phagocytes is emerging. At the mechanistic level, differential expression of immunoprotective and immunomodulatory mediators has been detected between the three main regions of the epididymis. In this review, we summarize the current state of knowledge about region-specific immunological characteristics and unveil possible underlying mechanisms on cellular and molecular levels. Improved understanding of the different immunological microenvironments is the basis for an improved therapy and counseling of patients with epididymal infections.


Assuntos
Infecções Bacterianas , Epididimite , Doença Aguda , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/terapia , Epididimo/imunologia , Epididimo/microbiologia , Epididimo/patologia , Epididimite/imunologia , Epididimite/microbiologia , Epididimite/patologia , Epididimite/terapia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Inflamação/terapia , Masculino
19.
Front Immunol ; 11: 583276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363533

RESUMO

Testicular macrophages (TM) play a central role in maintaining testicular immune privilege and protecting spermatogenesis. Recent studies showed that their immunosuppressive properties are maintained by corticosterone in the testicular interstitial fluid, but the underlying molecular mechanisms are unknown. In this study, we treated mouse bone marrow-derived macrophages (BMDM) with corticosterone (50 ng/ml) and uncovered AMP-activated protein kinase (AMPK) activation as a critical event in M2 polarization at the phenotypic, metabolic, and cytokine production level. Primary TM exhibited remarkably similar metabolic and phenotypic features to corticosterone-treated BMDM, which were partially reversed by AMPK-inhibition. In a murine model of uropathogenic E. coli-elicited orchitis, intraperitoneal injection with corticosterone (0.1mg/day) increased the percentage of M2 TM in vivo, in a partially AMPK-dependent manner. This study integrates the influence of corticosterone on M2 macrophage metabolic pathways, phenotype, and function, and highlights a promising new avenue for the development of innovative therapeutics for orchitis patients.


Assuntos
Corticosterona/imunologia , Infecções por Escherichia coli/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Orquite/imunologia , Proteínas Quinases Ativadas por AMP/imunologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Corticosterona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquite/metabolismo , Fenótipo , Testículo , Escherichia coli Uropatogênica/imunologia
20.
Front Immunol ; 11: 583135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101310

RESUMO

Infection and inflammation of the male reproductive tract are relevant causes of infertility. Inflammatory damage occurs in the special immunosuppressive microenvironment of the testis, a hallmark termed testicular immune privilege, which allows tolerance to neo-antigens from developing germ cells appearing at puberty, long after the establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO) is a well-established rodent model of chronic testicular inflammation and organ specific autoimmunity that offers a valuable in vivo tool to investigate the pathological and molecular mechanisms leading to the breakdown of the testicular immune privilege. The disease is characterized by the infiltration of the interstitium by immune cells (mainly macrophages, dendritic cells, and T cells), formation of autoantibodies against testicular antigens, production of pro-inflammatory mediators such as NO, MCP1, TNFα, IL6, or activins and dysregulation of steroidogenesis with reduced levels of serum testosterone. EAO leads to sloughing of germ cells, atrophic seminiferous tubules and fibrotic remodeling, parameters all found similarly to changes in human biopsies from infertile patients with inflammatory infiltrates. Interestingly, testosterone supplementation during the course of EAO leads to expansion of the regulatory T cell population and inhibition of disease development. Knowledge of EAO pathogenesis aims to contribute to a better understanding of human testicular autoimmune disease as an essential prerequisite for improved diagnosis and treatment.


Assuntos
Doenças Autoimunes/imunologia , Orquite/imunologia , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...