Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961772

RESUMO

Melanogenesis-stimulated B16-F10 cells enter in a quiescent state, present inhibited mitochondrial respiration and increased reactive oxygen species levels. These alterations suggest that these cells may be under redox signaling, allowing tumor survival. The aim of this study was to evaluate redox-modified proteins in B16-F10 cells after melanogenesis stimulation and rose bengal-photodynamic therapy (RB-PDT). A redox proteomics label-free approach based on the biotin switch assay technique with biotin-HPDP and N-ethylmaleimide was used to assess the thiol-oxidized protein profile. Aconitase was oxidized at Cys-448 and Cys-451, citrate synthase was oxidized at Cys-202 and aspartate aminotransferase (Got2) was oxidized at Cys-272 and Cys-274, exclusively after melanogenesis stimulation. After RB-PDT, only guanine nucleotide-binding protein subunit beta-2-like 1 (Gnb2l1) was oxidized (Cys-168). In contrast, melanogenesis stimulation followed by RB-PDT led to the oxidation of different cysteines in Gnb2l1 (Cys-153 and Cys-249). Besides that, glyceraldehyde-3-phosphate dehydrogenase (Gapdh) presented oxidation at Cys-245, peptidyl-prolyl cis-trans isomerase A (Ppia) was oxidized at Cys-161 and 5,6-dihydroxyindole-2-carboxylic acid oxidase (Tyrp1) was oxidized at Cys-65, Cys-30, and Cys-336 after melanogenesis stimulation followed by RB-PDT. The redox alterations observed in murine melanoma cells and identification of possible target proteins are of great importance to further understand tumor resistance mechanisms.

2.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552620

RESUMO

Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.

3.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804926

RESUMO

The conceptualization of a novel type of cell death, called ferroptosis, opens new avenues for the development of more efficient anti-cancer therapeutics. In this context, a full understanding of the ferroptotic pathways, the players involved, their precise role, and dispensability is prerequisite. Here, we focused on the importance of glutathione (GSH) for ferroptosis prevention in pancreatic ductal adenocarcinoma (PDAC) cells. We genetically deleted a unique, rate-limiting enzyme for GSH biosynthesis, γ-glutamylcysteine ligase (GCL), which plays a key role in tumor cell proliferation and survival. Surprisingly, although glutathione peroxidase 4 (GPx4) has been described as a guardian of ferroptosis, depletion of its substrate (GSH) led preferentially to apoptotic cell death, while classical ferroptotic markers (lipid hydroperoxides) have not been observed. Furthermore, the sensitivity of PDAC cells to the pharmacological/genetic inhibition of GPx4 revealed GSH dispensability in this context. To the best of our knowledge, this is the first time that the complete dissection of the xCT-GSH-GPx4 axis in PDAC cells has been investigated in great detail. Collectively, our results revealed the necessary role of GSH in the overall redox homeostasis of PDAC cells, as well as the dispensability of this redox-active molecule for a specific, antioxidant branch dedicated to ferroptosis prevention.

4.
Photochem Photobiol ; 98(6): 1355-1364, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35398885

RESUMO

Melanoma is a type of tumor that originates from melanocytes. Irradiation of melanin with UVA and visible light can produce reactive oxygen species (ROS) such as singlet molecular oxygen (1 O2 ). The objective of this study was to examine DNA damage in melanoma cells (B16-F10) with different melanin contents, subjected to 1 O2 generation. To this end, we used the photosensitizer Rose Bengal acetate (RBAc) and irradiation with visible light (526 nm) (RBAc-PDT). We used the modified comet assay with the repair enzymes hOGG1 and T4 endonuclease V to detect the DNA damage associated with 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers lesions, respectively. We observed increased formation of hOGG1- and T4endoV-sensitive DNA lesions after light exposure (with or without RBAc). Furthermore, 18 h after irradiation, hOGG1-sensitive DNA lesions increased compared to that at the initial time point (0 h), which shows that a high melanin content contributes to post-irradiation formation of them, mainly via sustained oxidative stress, as confirmed by the measurement of ROS levels and activity of antioxidant enzymes. Contrastingly, the number of T4endoV-sensitive DNA lesions decreased over time (18 h). Our data indicate that in melanoma cells, a higher amount of melanin may affect DNA damage levels when subjected to RBAc-PDT.


Assuntos
Melanoma , Transtornos de Fotossensibilidade , Humanos , Melaninas , Rosa Bengala/farmacologia , Espécies Reativas de Oxigênio , Raios Ultravioleta , Dano ao DNA , Melanoma/patologia , Oxigênio Singlete , DNA/efeitos da radiação
5.
Cancers (Basel) ; 13(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801101

RESUMO

In our previous study, we showed that a cystine transporter (xCT) plays a pivotal role in ferroptosis of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. However, in vivo xCTKO cells grew normally indicating that a mechanism exists to drastically suppress the ferroptotic phenotype. We hypothesized that plasma and neighboring cells within the tumor mass provide a source of cysteine to confer full ferroptosis resistance to xCTKO PDAC cells. To evaluate this hypothesis, we (co-) cultured xCTKO PDAC cells with different xCT-proficient cells or with their conditioned media. Our data unequivocally showed that the presence of a cysteine/cystine shuttle between neighboring cells is the mechanism that provides redox and nutrient balance, and thus ferroptotic resistance in xCTKO cells. Interestingly, although a glutathione shuttle between cells represents a good alternative hypothesis as a "rescue-mechanism", our data clearly demonstrated that the xCTKO phenotype is suppressed even with conditioned media from cells lacking the glutathione biosynthesis enzyme. Furthermore, we demonstrated that prevention of lipid hydroperoxide accumulation in vivo is mediated by import of cysteine into xCTKO cells via several genetically and pharmacologically identified transporters (ASCT1, ASCT2, LAT1, SNATs). Collectively, these data highlight the importance of the tumor environment in the ferroptosis sensitivity of cancer cells.

6.
Cell Death Dis ; 11(9): 789, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968052

RESUMO

Contextualisation of the new type of cell death called "ferroptosis" opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which "ferroptosis inducers" can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.


Assuntos
Comunicação Celular/fisiologia , Morte Celular/fisiologia , Ferroptose , Ferro , Neoplasias/patologia , Morte Celular/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Humanos , Ferro/metabolismo , Ferro/farmacologia , Neoplasias/metabolismo
7.
Exp Cell Res ; 350(1): 62-72, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864061

RESUMO

Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer, because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψm) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4mML-tyrosine and 10mM NH4Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state.


Assuntos
Melaninas/biossíntese , Melanoma Experimental/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...