RESUMO
In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.
Assuntos
Poluentes Atmosféricos , Mercúrio , Metais Pesados , Tillandsia , Oligoelementos , Humanos , Oligoelementos/análise , Material Particulado/análise , Tillandsia/química , Brasil , Monitoramento Biológico , Saúde Pública , Alumínio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromo/análise , Mercúrio/análise , Manganês/análise , Metais Pesados/análiseRESUMO
Poultry litter soil application contributes to sustainability of agricultural systems and is in accordance with the United Nations Sustainable Development Goals (UN-SDG). Poultry litter recommended rates are based on crop nitrogen (N) needs, however, their application can be a potential source of antibiotics and trace elements overload. The aim of the study was to estimate the role of poultry litter application on soil contamination by fluoroquinolones [enrofloxacin (ENR) and ciprofloxacin (CIP)] and trace elements, based on N requirements for crops. Analytical and sampling techniques were used to estimate the loads from poultry litter application. Only CIP was found in poultry litter samples (283 ± 124 µg kg-1) and its load was estimated to be of 9.89 ± 4.33 g ha-1, for the poultry litter application (35 t ha-1). The estimated loads (g ha-1) of trace elements were: Cr 9.19 ± 3.26, Ni 12.3 ± 4.93, Pb 22.0 ± 8.26, Cu 229 ± 85.6, Mn 691 ± 259 and Zn 1,011 ± 378. These estimates were 900% higher than those recommended by the technical guidance, while N exceeded 600% the recommended application. In order to achieve UN-SDGs, local policies to disseminate knowledge and technologies are required for consolidating sustainable agricultural practices.
Assuntos
Fluoroquinolonas/análise , Esterco/análise , Nitrogênio , Aves Domésticas , Poluentes do Solo/análise , Oligoelementos/análise , Agricultura , Animais , Brasil , Ciprofloxacina/análise , Produtos Agrícolas , Enrofloxacina/análise , Fertilizantes , Solo/químicaRESUMO
Poultry litter is widely used as fertilizer in soils and can be a relevant source of heavy metals for agricultural environments. In this study, poultry litter fertilization of long-term (< 1-30 years) was evaluated in tropical soils. Our main goal was to investigate the occurrence of temporal variation in the available fraction of heavy metals (Cu, Cr, Zn, Pb, Cd, and Mn) in soils, in addition to their environmental loads through new indexes for risk assessment. The highest mean concentrations in poultry litter were the following: 525 mg kg-1 for Mn, 146 mg kg-1 for Zn, and 94.4 mg kg-1 for Cu. For soils, concentrations were higher for the same heavy metals: Mn (906 mg kg-1), Zn (111 mg kg-1), and Cu (26.3 mg kg-1). Significant accumulation (p < 0.05) in fertilized soils was observed for Cu, Cr, and Zn. The high estimates of poultry litter input based on geological background (LIGB) for Cu, Cr, and Zn coincided with the accumulation observed in soils, confirming the effectiveness of the index. The risk of biogeochemical transfer based on fertilized soils (LIFS) decreased for Cu, Cr, and Zn between 10 and 30 years of soil fertilization. For Mn, a very high LIFS was estimated in all long-term fertilized soils. The proposed indices, based on heavy metal concentration, can be used in risk assessments to guide future studies that analyze other environmental matrices possibly impacted by manure and poultry litter fertilization.
Assuntos
Monitoramento Ambiental/métodos , Fertilizantes/análise , Esterco/análise , Metais Pesados/análise , Solo/química , Agricultura , Animais , Brasil , Aves Domésticas , Medição de Risco , Poluentes do Solo/análiseRESUMO
In this study, pyrethroids were determined in chicken eggs from commercial farm (n = 60) and home egg production (n = 30). These pyrethroids were investigated: bifenthrin, phenothrin, permethrin, cyfluthrin, cypermethrin and fenvalerate, including most diastereomers. Quantification was done using GC-MS in a negative chemical ionization mode. Pyrethroids residues were found in 79% of the analyzed samples. Cypermethrin presented the highest occurrence, being quantified in 62 samples (69%) in concentrations (lipid weight - l w.) varying between 0.29 and 6408 ng g-1, followed by phenothrin (24%), 21-3910 ng g-1, permethrin (14%), 2.96-328 ng g-1, and bifenthrin (11%), 3.77-16.7 ng g-1. Cyfluthrin and fenvalerate were not detected. Home-produced eggs had a higher occurrence of pyrethroids (97%), with a greater predominance of phenothrin. In commercial production, 70% of the samples presented pyrethroid residues (predominantly cypermethrin). This is the first report about the presence of pyrethroids in home-produced eggs and the first description of a selectivity pattern with the predominance of cis diastereomers in chicken eggs. In general, estimated daily intake does not present a risk to human consumption, according to Brazilian and international standards (FAO/WHO). However, one third of the samples (30 eggs) had concentrations above the maximum residue limits (MRLs). The maximum cypermethrin concentration was 66 times the MRL, while the maximum phenothrin concentration was 11 times the limit. Further studies about transfer dynamics, bioaccumulation and metabolic degradation of stereoisomers are required, as well as determining if this selectivity pattern in food can increase consumer's health risk.
Assuntos
Ovos/análise , Exposição Ambiental/estatística & dados numéricos , Fazendas , Inseticidas/análise , Piretrinas/análise , Animais , Brasil , Galinhas/metabolismo , Dieta/estatística & dados numéricos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Nitrilas , Permetrina/análise , Piretrinas/metabolismoRESUMO
PURPOSE: The aims of this paper were to quantify the heavy metals (HM) in the air of different sites in Rio de Janeiro (RJ) and Salvador (SA) using Tillandsia usneoides (Bromeliaceae) as a biomonitor, and to study the morphology and elemental composition of the air particulate matter (PM) retained on the Tillandsia surface. METHODS: Tillandsia samples were collected in a noncontaminated area and exposed to the air of five sites in RJ State and seven in SA for 45 days, in two seasons. Samples were prepared to HM quantification by flame atomic absorption spectrophotometry, while morphological and elemental characterizations were studied by using scanning electron microscopy. RESULTS: HM concentrations were significantly higher when compared to control sites. We found an increasing metal concentration as follows: Cd < Cr < Pb < Cu < Zn. PM exhibited a morphology varying from amorphous- to polygonal-shaped particles. Size measurements indicated that more than 80% of particles were less than 10 µm. PM contained aluminosilicates iron-rich particles, but Zn, Cu, Cr, and Ba were also detected. CONCLUSION: HM input in the atmosphere was mainly associated with anthropogenic sources such as vehicle exhaust. Elemental analysis detected HM in the inhalable particles, indicating that those HMs may intensify the toxic effects of PM on human health. Our results indicated T. usneoides as an adequate biomonitor of HM in the PM belonging to the inhalable fraction.