Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348500

RESUMO

In winter, many reptiles have a period of inactivity ("brumation"). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, Tarentola annularis, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December-February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles' physiological adaptations to environmental changes.

2.
Sci Data ; 11(1): 243, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413613

RESUMO

Trait datasets are increasingly being used in studies investigating eco-evolutionary theory and global conservation initiatives. Reptiles are emerging as a key group for studying these questions because their traits are crucial for understanding the ability of animals to cope with environmental changes and their contributions to ecosystem processes. We collected data from earlier databases, and the primary literature to create an up-to-date dataset of reptilian traits, encompassing 40 traits from 12060 species of reptiles (Archelosauria: Crocodylia and Testudines, Rhynchocephalia, and Squamata: Amphisbaenia, Sauria, and Serpentes). The data were gathered from 1288 sources published between 1820 and 2023. The dataset includes morphological, physiological, behavioral, and life history traits, as well as information on the availability of genetic data, IUCN Red List assessments, and population trends.


Assuntos
Ecossistema , Répteis , Animais , Evolução Biológica , Fenótipo , Répteis/fisiologia
3.
Glob Chang Biol ; 30(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273552

RESUMO

We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered-our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist.


Assuntos
Ecossistema , Extinção Biológica , Animais , Anfíbios , Áreas Alagadas , Mamíferos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Biodiversidade
5.
Ecol Evol ; 13(12): e10791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094152

RESUMO

In animals, the success of particular lineages can be measured in terms of their number of species, the extent of their geographic range, the breadth of their habitats and ecological niches, and the diversity of their morphological and life-history traits. Here, we review the distribution, ecology, morphology and life history of skinks, a diverse lineage of terrestrial vertebrates. We compared key traits between the three subfamilies of skinks, and between skinks and non-scincid lizards. There are currently 1743 described species of skink, which represent 24% of global lizard diversity. Since 2010, 16% of lizard descriptions have been of skinks. The centres of skink diversity are in Australia, New Guinea, southeast Asia, Oceania, Madagascar and central Africa. Compared with non-scincid lizards, skinks have larger distributional ranges, but smaller body sizes. Sexual size dimorphism is rare in skinks. Almost a quarter (23%) of skinks exhibit limb reduction or loss, compared with just 3% of non-scincid lizards. Skinks are more likely to be viviparous (34% of species) compared with non-scincids (13%), and have higher clutch/litter sizes than non-scincids. Although skinks mature later than non-scincids, their longevity is similar to that exhibited by other lizard groups. Most skinks (88%) are active foragers, and they are more likely to be carnivorous than non-scincids. Skinks are more likely to be diurnal or cathemeral than other lizard groups, but they generally have lower field body temperatures compared with non-scincids. The success of skinks appears to be both a result of them hitting upon a winning body plan and ecology, and their capacity to regularly deviate from this body plan and adapt their ecology and life history (e.g. repeated limb reduction and loss, transitions to viviparity) to prevailing conditions.

6.
R Soc Open Sci ; 10(12): 231429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094277

RESUMO

Evolutionary shifts from one habitat type to another can clarify selective forces that affect life-history attributes. Four lineages of snakes (acrochordids and three clades within the Elapidae) have invaded marine habitats, and all have larger offspring than do terrestrial snakes. Predation by fishes on small neonates offers a plausible selective mechanism for that shift, because ascending to breathe at the ocean surface exposes a marine snake to midwater predation whereas juvenile snakes in terrestrial habitats can remain hidden. Consistent with this hypothesis, snake-shaped models moving through a coral-reef habitat in New Caledonia attracted high rates of attack by predatory fishes, and small models (the size of neonatal terrestrial snakes) were attacked more frequently than were large models (the size of neonatal sea snakes). Vulnerability to predatory fishes may have imposed strong selection for increased offspring size in marine snakes.

7.
Biol Lett ; 19(11): 20230395, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37990563

RESUMO

A phylogenetically diverse minority of snake and lizard species exhibit rostral and ocular appendages that substantially modify the shape of their heads. These cephalic horns have evolved multiple times in diverse squamate lineages, enabling comparative tests of hypotheses on the benefits and costs of these distinctive traits. Here, we demonstrate correlated evolution between the occurrence of horns and foraging mode. We argue that although horns may be beneficial for various functions (e.g. camouflage, defence) in animals that move infrequently, they make active foragers more conspicuous to prey and predators, and hence are maladaptive. We therefore expected horns to be more common in species that ambush prey (entailing low movement rates) rather than in actively searching (frequently moving) species. Consistent with that hypothesis, our phylogenetic comparative analysis of published data on 1939 species reveals that cephalic horns occur almost exclusively in sit-and-wait predators. This finding underlines how foraging mode constrains the morphology of squamates and provides a compelling starting point for similar studies in other animal groups.


Assuntos
Lagartos , Animais , Filogenia , Lagartos/anatomia & histologia , Comportamento Alimentar , Serpentes/anatomia & histologia , Olho , Evolução Biológica
8.
Proc Biol Sci ; 290(2005): 20231379, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583322

RESUMO

The repeated evolution of gliding in diverse Asian vertebrate lineages is hypothesized to have been triggered by the dominance of tall dipterocarp trees in the tropical forests of Southeast Asia. These dipterocarp forests have acted as both centres of diversification and climatic refugia for gliding vertebrates, and support most of their extant diversity. We predict similarities in the diversification patterns of dipterocarp trees and gliding vertebrates, and specifically test whether episodic diversification events such as rate shifts and/or mass extinctions were temporally congruent in these groups. We analysed diversification patterns in reconstructed timetrees of Asian dipterocarps, the most speciose gliding vertebrates from different classes (Draco lizards, gliding frogs and Pteromyini squirrels) and compared them with similar-sized clades of non-gliding relatives (Diploderma lizards, Philautus frogs and Callosciurinae squirrels) from Southeast Asia. We found significant declines in net-diversification rates of dipterocarps and the gliding vertebrates during the Pliocene-Pleistocene, but not in the non-gliding groups. We conclude that the homogeneity and temporal coincidence of these rate declines point to a viable ecological correlation between dipterocarps and the gliding vertebrates. Further, we suggest that while the diversification decay in dipterocarps was precipitated by post-Miocene aridification of Asia, the crises in the gliding vertebrates were induced by both events concomitantly.


Assuntos
Lagartos , Árvores , Animais , Filogenia , Sudeste Asiático , Ásia , Anuros
9.
J Anim Ecol ; 92(11): 2163-2174, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632258

RESUMO

The reptilian form of hibernation (brumation) is much less studied than its mammalian and insect equivalents. Hibernation and brumation share some basic features but may differ in others. Evidence for hypometabolism in brumating reptiles beyond the effect of temperature is sporadic and often ignored. We calculated the standard metabolic rates (SMR, oxygen uptake during inactivity), in winter and/or summer, of 156 individuals representing 59 species of Israeli squamates across all 17 local families. For 32 species, we measured the same individuals during both seasons. We measured gas exchange continuously in a dark metabolic chamber, under the average January high and low temperatures (20°C and 12°C), during daytime and nighttime. We examined how SMR changes with season, biome, body size, temperature and time of day, using phylogenetic mixed models. Metabolic rates increased at sunrise in the diurnal species, despite no light or other external cues, while in nocturnal species the metabolic rates did not increase. Cathemeral species shifted from a diurnal-like diel pattern in winter to a nocturnal-like pattern in summer. Regardless of season, Mediterranean species SMRs were 30% higher than similar-sized desert species. Summer SMR of all species together scaled with body size with an exponent of 0.84 but dropped to 0.71 during brumation. Individuals measured during both seasons decreased their SMR between summer and winter by a 47%, on average, at 20°C and by 70% at 12°C. Q10 was 1.75 times higher in winter than in summer, possibly indicating an active suppression of metabolic processes under cold temperatures. Our results challenge the commonly held perception that squamate physiology is mainly shaped by temperature, with little role for intrinsic metabolic regulation. The patterns we describe indicate that seasonal, diel and geographic factors can trigger remarkable shifts in metabolism across squamate species.


Assuntos
Temperatura Baixa , Metabolismo Energético , Humanos , Animais , Temperatura , Estações do Ano , Filogenia , Metabolismo Energético/fisiologia , Temperatura Corporal , Mamíferos
10.
Evolution ; 77(8): 1829-1841, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279331

RESUMO

Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.


Assuntos
Lagartos , Masculino , Animais , Feminino , Lagartos/genética , Filogenia , Feromônios , Caracteres Sexuais , Hibridização Genética
11.
Ecol Evol ; 13(6): e10211, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332523

RESUMO

Ecogeographic research into how species' forms vary across space, time, and climate has taken on new urgency due to contemporary global climate change. Research using museum specimens and other records to study biological rules like Bergmann's, Allen's, and Gloger's Rules has a long history and continues to generate publications and robust scientific debates. Despite the prevalence and history of the field, however, no simple guide on how to carry out such work has ever been published. To lower the barriers of entry for new researchers, this review was created as a practical guide on how to perform ecogeographic research. The guide consolidates disparately published methodologies into a single, convenient document that reviews the history and present of the field of ecogeographic rule research, and describes how to generate appropriate hypotheses, design experiments, gather, and analyze biotic and geographic data, and interpret the results in an ecologically meaningful manner. The result is a semi-standardized guide that enables scientists at all levels from any institution to carry out an investigation from start to finish on any biological rule, taxon, and location of their choice.

12.
Nat Commun ; 14(1): 1389, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914628

RESUMO

Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais , Répteis , Anfíbios , Biodiversidade
13.
Sci Rep ; 13(1): 4839, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964263

RESUMO

The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.


Assuntos
Colubridae , Animais , Filogenia , Mitocôndrias/genética , Líbano , Síria , DNA Mitocondrial/genética
14.
Proc Natl Acad Sci U S A ; 120(10): e2204892120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848563

RESUMO

Wild mammals are icons of conservation efforts, yet there is no rigorous estimate available for their overall global biomass. Biomass as a metric allows us to compare species with very different body sizes, and can serve as an indicator of wild mammal presence, trends, and impacts, on a global scale. Here, we compiled estimates of the total abundance (i.e., the number of individuals) of several hundred mammal species from the available data, and used these to build a model that infers the total biomass of terrestrial mammal species for which the global abundance is unknown. We present a detailed assessment, arriving at a total wet biomass of ≈20 million tonnes (Mt) for all terrestrial wild mammals (95% CI 13-38 Mt), i.e., ≈3 kg per person on earth. The primary contributors to the biomass of wild land mammals are large herbivores such as the white-tailed deer, wild boar, and African elephant. We find that even-hoofed mammals (artiodactyls, such as deer and boars) represent about half of the combined mass of terrestrial wild mammals. In addition, we estimated the total biomass of wild marine mammals at ≈40 Mt (95% CI 20-80 Mt), with baleen whales comprising more than half of this mass. In order to put wild mammal biomass into perspective, we additionally estimate the biomass of the remaining members of the class Mammalia. The total mammal biomass is overwhelmingly dominated by livestock (≈630 Mt) and humans (≈390 Mt). This work is a provisional census of wild mammal biomass on Earth and can serve as a benchmark for human impacts.


Assuntos
Caniformia , Cervos , Humanos , Animais , Suínos , Biomassa , Cetáceos , Sus scrofa
16.
Mol Phylogenet Evol ; 180: 107700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603697

RESUMO

The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/subfamily level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological synapomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.


Assuntos
Evolução Biológica , Serpentes , Animais , Filogenia , Serpentes/genética
17.
Nature ; 615(7952): 461-467, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653454

RESUMO

The frequency, duration, and intensity of extreme thermal events are increasing and are projected to further increase by the end of the century1,2. Despite the considerable consequences of temperature extremes on biological systems3-8, we do not know which species and locations are most exposed worldwide. Here we provide a global assessment of land vertebrates' exposures to future extreme thermal events. We use daily maximum temperature data from 1950 to 2099 to quantify future exposure to high frequency, duration, and intensity of extreme thermal events to land vertebrates. Under a high greenhouse gas emission scenario (Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5); 4.4 °C warmer world), 41.0% of all land vertebrates (31.1% mammals, 25.8% birds, 55.5% amphibians and 51.0% reptiles) will be exposed to extreme thermal events beyond their historical levels in at least half their distribution by 2099. Under intermediate-high (SSP3-7.0; 3.6 °C warmer world) and intermediate (SSP2-4.5; 2.7 °C warmer world) emission scenarios, estimates for all vertebrates are 28.8% and 15.1%, respectively. Importantly, a low-emission future (SSP1-2.6, 1.8 °C warmer world) will greatly reduce the overall exposure of vertebrates (6.1% of species) and can fully prevent exposure in many species assemblages. Mid-latitude assemblages (desert, shrubland, and grassland biomes), rather than tropics9,10, will face the most severe exposure to future extreme thermal events. By 2099, under SSP5-8.5, on average 3,773 species of land vertebrates (11.2%) will face extreme thermal events for more than half a year period. Overall, future extreme thermal events will force many species and assemblages into constant severe thermal stress. Deep greenhouse gas emissions cuts are urgently needed to limit species' exposure to thermal extremes.


Assuntos
Ecossistema , Calor Extremo , Mapeamento Geográfico , Aquecimento Global , Temperatura , Vertebrados , Animais , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/provisão & distribuição , Mamíferos , Vertebrados/classificação , História do Século XX , História do Século XXI , Fatores de Tempo , Clima Desértico , Pradaria , Clima Tropical , Aves , Anfíbios , Répteis , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Calor Extremo/efeitos adversos
19.
PLoS Biol ; 20(5): e3001544, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617356

RESUMO

The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning-based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles-the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Filogenia , Répteis
20.
Sci Rep ; 12(1): 3453, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361771

RESUMO

The Late Quaternary witnessed a dramatic wave of large mammal extinctions, that are usually attributed to either human hunting or climatic change. We hypothesized that the large mammals that survived the extinctions might have been endowed with larger brain sizes than their relatives, which could have conferred enhanced behavioral plasticity and the ability to cope with the rapidly changing Late Quaternary environmental conditions. We assembled data on brain sizes of 291 extant mammal species plus 50 more that went extinct during the Late Quaternary. Using logistic, and mixed effect models, and controlling for phylogeny and body mass, we found that large brains were associated with higher probability to survive the Late Quaternary extinctions, and that extant species have brains that are, on average, 53% larger when accounting for order as a random effect, and 83% when fitting a single regression line. Moreover, we found that models that used brain size in addition to body size predicted extinction status better than models that used only body size. We propose that possessing a large brain was an important, yet so far neglected characteristic of surviving megafauna species.


Assuntos
Extinção Biológica , Mamíferos , Animais , Tamanho Corporal , Encéfalo , Mudança Climática , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...