Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Control Release ; 361: 694-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567507

RESUMO

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Assuntos
Curcumina , Vesículas Extracelulares , Ligantes , Vesículas Extracelulares/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Colesterol/metabolismo
2.
Commun Biol ; 6(1): 478, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137966

RESUMO

Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.


Assuntos
Vesículas Extracelulares , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Membrana Celular/metabolismo
3.
J Control Release ; 357: 630-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084890

RESUMO

Extracellular vesicles (EVs) are efficient natural vehicles for intercellular communication and are under extensive investigation for the delivery of diverse therapeutics including small molecule drugs, nucleic acids, and proteins. To understand the mechanisms behind the biological activities of EVs and develop EV therapeutics, it's fundamental to track EVs and engineer EVs in a customized manner. In this study, we identified, using single-vesicle flow cytometry and microscopy, the lipid DOPE (dioleoyl phosphatidyl ethanolamine) as an efficient anchor for isolated EVs. Notably, DOPE associated with EVs quickly, and the products remained stable under several challenging conditions. Moreover, conjugating fluorophores, receptor-targeting peptides or albumin-binding molecules with DOPE enabled tracking the cellular uptake, enhanceing the cellular uptake or extending the circulation time in mice of engineered EVs , respectively. Taken together, this study reports an efficient lipid anchor for exogenous engineering of EVs and further showcases its versatility for the functionalization of EVs.


Assuntos
Vesículas Extracelulares , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Comunicação Celular , Lipídeos/análise
4.
J Extracell Vesicles ; 11(12): e12282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437554

RESUMO

Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.


Assuntos
Vesículas Extracelulares , Dióxido de Silício , Dióxido de Silício/metabolismo , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Diagnóstico por Imagem , Biomarcadores/metabolismo
5.
Nanomaterials (Basel) ; 12(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407349

RESUMO

The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.

6.
Biomedicines ; 10(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35203448

RESUMO

Platelet-rich plasma is a promising regenerative therapeutic with controversial efficacy. We and others have previously demonstrated regenerative functions of human platelet lysate (HPL) as an alternative platelet-derived product. Here we separated extracellular vesicles (EVs) from soluble factors of HPL to understand the mode of action during skin-organoid formation and immune modulation as model systems for tissue regeneration. HPL-EVs were isolated by tangential-flow filtration (TFF) and further purified by size-exclusion chromatography (SEC) separating EVs from (lipo)protein-enriched soluble fractions. We characterized samples by tunable resistive pulse sensing, western blot, tandem mass-tag proteomics and super-resolution microscopy. We evaluated EV function during angiogenesis, wound healing, organoid formation and immune modulation. We characterized EV enrichment by TFF and SEC according to MISEV2018 guidelines. Proteomics showed three major clusters of protein composition separating TSEC-EVs from HPL clustering with TFF soluble fractions and TFF-EVs clustering with TSEC soluble fractions, respectively. HPL-derived TFF-EVs promoted skin-organoid formation and inhibited T-cell proliferation more efficiently than TSEC-EVs or TSEC-soluble fractions. Recombining TSEC-EVs with TSEC soluble fractions re-capitulated TFF-EV effects. Zeta potential and super-resolution imaging further evidenced protein corona formation on TFF-EVs. Corona depletion on SEC-EVs could be artificially reconstituted by TSEC late fraction add-back. In contrast to synthetic nanoparticles, which commonly experience reduced function after corona formation, the corona-bearing EVs displayed improved functionality. We conclude that permissive isolation technology, such as TFF, and better understanding of the mechanism of EV corona function are required to realize the complete potential of platelet-based regenerative therapies.

7.
Microorganisms ; 8(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878302

RESUMO

Persistent infections with the human pathogen Helicobacter pylori (H. pylori) have been closely associated with the induction and progression of a wide range of gastric disorders, including acute and chronic gastritis, ulceration in the stomach and duodenum, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. The pathogenesis of H. pylori is determined by a complicated network of manifold mechanisms of pathogen-host interactions, which involves a coordinated interplay of H. pylori pathogenicity and virulence factors with host cells. While these molecular and cellular mechanisms have been intensively investigated to date, the knowledge about outer membrane vesicles (OMVs) derived from H. pylori and their implication in bacterial pathogenesis is not well developed. In this review, we summarize the current knowledge on H. pylori-derived OMVs.

8.
J Extracell Vesicles ; 8(1): 1663043, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579435

RESUMO

Extracellular vesicles (EV) convey biological information by transmitting macromolecules between cells and tissues and are of great promise as pharmaceutical nanocarriers, and as therapeutic per se. Strategies for customizing the EV surface and cargo are being developed to enable their tracking, visualization, loading with pharmaceutical agents and decoration of the surface with tissue targeting ligands. While much progress has been made in the engineering of EVs, an exhaustive comparative analysis of the most commonly exploited EV-associated proteins, as well as a quantification at the molecular level are lacking. Here, we selected 12 EV-related proteins based on MS-proteomics data for comparative quantification of their EV engineering potential. All proteins were expressed with fluorescent protein (FP) tags in EV-producing cells; both parent cells as well as the recovered vesicles were characterized biochemically and biophysically. Using Fluorescence Correlation Spectroscopy (FCS) we quantified the number of FP-tagged molecules per vesicle. We observed different loading efficiencies and specificities for the different proteins into EVs. For the candidates showing the highest loading efficiency in terms of engineering, the molecular levels in the vesicles did not exceed ca 40-60 fluorescent proteins per vesicle upon transient overexpression in the cells. Some of the GFP-tagged EV reporters showed quenched fluorescence and were either non-vesicular, despite co-purification with EVs, or comprised a significant fraction of truncated GFP. The co-expression of each target protein with CD63 was further quantified by widefield and confocal imaging of single vesicles after double transfection of parent cells. In summary, we provide a quantitative comparison for the most commonly used sorting proteins for bioengineering of EVs and introduce a set of biophysical techniques for straightforward quantitative and qualitative characterization of fluorescent EVs to link single vesicle analysis with single molecule quantification.

9.
Proc Natl Acad Sci U S A ; 116(8): 2935-2944, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718402

RESUMO

Human antigen R (HuR) is a key regulator of cellular mRNAs containing adenylate/uridylate-rich elements (AU-rich elements; AREs). These are a major class of cis elements within 3' untranslated regions, targeting these mRNAs for rapid degradation. HuR contains three RNA recognition motifs (RRMs): a tandem RRM1 and 2, followed by a flexible linker and a C-terminal RRM3. While RRM1 and 2 are structurally characterized, little is known about RRM3. Here we present a 1.9-Å-resolution crystal structure of RRM3 bound to different ARE motifs. This structure together with biophysical methods and cell-culture assays revealed the mechanism of RRM3 ARE recognition and dimerization. While multiple RNA motifs can be bound, recognition of the canonical AUUUA pentameric motif is possible by binding to two registers. Additionally, RRM3 forms homodimers to increase its RNA binding affinity. Finally, although HuR stabilizes ARE-containing RNAs, we found that RRM3 counteracts this effect, as shown in a cell-based ARE reporter assay and by qPCR with native HuR mRNA targets containing multiple AUUUA motifs, possibly by competing with RRM12.


Assuntos
Proteínas ELAV/química , Proteína Semelhante a ELAV 1/química , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/química , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato/genética , Cristalografia por Raios X , Dimerização , Proteína Semelhante a ELAV 1/genética , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Ligação a RNA/genética , Ribonucleosídeo Difosfato Redutase/química , Proteínas Supressoras de Tumor/química
10.
EMBO J ; 37(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449323

RESUMO

The accurate cleavage of pre-micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA-induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N-terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single-molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence-specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo-symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer-TRBP-siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer-mediated cleavage accuracy by binding the dsRNA region of the pre-miRNA during Dicer cleavage.


Assuntos
Motivo de Ligação ao RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Modelos Moleculares , Análise Espectral/métodos
11.
Cancer Res ; 77(18): 5011-5025, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687616

RESUMO

The majority of pancreatic ductal adenocarcinomas (PDAC) rely on the mRNA stability factor HuR (ELAV-L1) to drive cancer growth and progression. Here, we show that CRISPR-Cas9-mediated silencing of the HuR locus increases the relative sensitivity of PDAC cells to PARP inhibitors (PARPi). PDAC cells treated with PARPi stimulated translocation of HuR from the nucleus to the cytoplasm, specifically promoting stabilization of a new target, poly (ADP-ribose) glycohydrolase (PARG) mRNA, by binding a unique sequence embedded in its 3' untranslated region. HuR-dependent upregulation of PARG expression facilitated DNA repair via hydrolysis of polyADP-ribose on related repair proteins. Accordingly, strategies to inhibit HuR directly promoted DNA damage accumulation, inefficient PAR removal, and persistent PARP-1 residency on chromatin (PARP-1 trapping). Immunoprecipitation assays demonstrated that the PARP-1 protein binds and posttranslationally modifies HuR in PARPi-treated PDAC cells. In a mouse xenograft model of human PDAC, PARPi monotherapy combined with targeted silencing of HuR significantly reduced tumor growth compared with PARPi therapy alone. Our results highlight the HuR-PARG axis as an opportunity to enhance PARPi-based therapies. Cancer Res; 77(18); 5011-25. ©2017 AACR.


Assuntos
Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Semelhante a ELAV 1/metabolismo , Glicosídeo Hidrolases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/química , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
12.
Cancer Res ; 77(9): 2424-2438, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428272

RESUMO

HuR is an RNA-binding protein implicated in immune homeostasis and various cancers, including colorectal cancer. HuR binding to AU-rich elements within the 3' untranslated region of mRNAs encoding oncogenes, growth factors, and various cytokines leads message stability and translation. In this study, we evaluated HuR as a small-molecule target for preventing colorectal cancer in high-risk groups such as those with familial adenomatosis polyposis (FAP) or inflammatory bowel disease (IBD). In human specimens, levels of cytoplasmic HuR were increased in colonic epithelial cells from patients with IBD, IBD-cancer, FAP-adenoma, and colorectal cancer, but not in patients with IBD-dysplasia. Intraperitoneal injection of the HuR small-molecule inhibitor MS-444 in AOM/DSS mice, a model of IBD and inflammatory colon cancer, augmented DSS-induced weight loss and increased tumor multiplicity, size, and invasiveness. MS-444 treatment also abrogated tumor cell apoptosis and depleted tumor-associated eosinophils, accompanied by a decrease in IL18 and eotaxin-1. In contrast, HuR inhibition in APCMin mice, a model of FAP and colon cancer, diminished the number of small intestinal tumors generated. In this setting, fecal microbiota, evaluated by 16S rRNA gene amplicon sequencing, shifted to a state of reduced bacterial diversity, with an increased representation of Prevotella, Akkermansia, and Lachnospiraceae Taken together, our results indicate that HuR activation is an early event in FAP-adenoma but is not present in IBD-dysplasia. Furthermore, our results offer a preclinical proof of concept for HuR inhibition as an effective means of FAP chemoprevention, with caution advised in the setting of IBD. Cancer Res; 77(9); 2424-38. ©2017 AACR.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Proteína Semelhante a ELAV 1/genética , Doenças Inflamatórias Intestinais/genética , Polipose Adenomatosa do Colo/microbiologia , Polipose Adenomatosa do Colo/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL11/genética , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Fezes/microbiologia , Furanos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Células HCT116 , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-18/genética , Camundongos , Naftóis/administração & dosagem , Células RAW 264.7
13.
Oncotarget ; 7(45): 74043-74058, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27677075

RESUMO

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3'UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Furanos/farmacologia , Naftóis/farmacologia , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proteína Semelhante a ELAV 1/metabolismo , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cancer Res ; 14(7): 599-611, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27053682

RESUMO

UNLABELLED: Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal cancers, in part, due to resistance to both conventional and targeted therapeutics. TRAIL directly induces apoptosis through engagement of cell surface Death Receptors (DR4 and DR5), and has been explored as a molecular target for cancer treatment. Clinical trials with recombinant TRAIL and DR-targeting agents, however, have failed to show overall positive outcomes. Herein, we identify a novel TRAIL resistance mechanism governed by Hu antigen R (HuR, ELAV1), a stress-response protein abundant and functional in PDA cells. Exogenous HuR overexpression in TRAIL-sensitive PDA cell lines increases TRAIL resistance whereas silencing HuR in TRAIL-resistant PDA cells, by siRNA oligo-transfection, decreases TRAIL resistance. PDA cell exposure to soluble TRAIL induces HuR translocation from the nucleus to the cytoplasm. Furthermore, it is demonstrated that HuR interacts with the 3'-untranslated region (UTR) of DR4 mRNA. Pre-treatment of PDA cells with MS-444 (Novartis), an established small molecule inhibitor of HuR, substantially increased DR4 and DR5 cell surface levels and enhanced TRAIL sensitivity, further validating HuR's role in affecting TRAIL apoptotic resistance. NanoString analyses on the transcriptome of TRAIL-exposed PDA cells identified global HuR-mediated increases in antiapoptotic processes. Taken together, these data extend HuR's role as a key regulator of TRAIL-induced apoptosis. IMPLICATIONS: Discovery of an important new HuR-mediated TRAIL resistance mechanism suggests that tumor-targeted HuR inhibition increases sensitivity to TRAIL-based therapeutics and supports their re-evaluation as an effective treatment for PDA patients. Mol Cancer Res; 14(7); 599-611. ©2016 AACR.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Recombinantes/farmacologia , Transfecção
15.
J Cell Biol ; 213(2): 173-84, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27114500

RESUMO

Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Pseudópodes/fisiologia , Transporte Biológico , Retículo Endoplasmático/ultraestrutura , Endossomos/ultraestrutura , Exossomos/fisiologia , Exossomos/ultraestrutura , Células HEK293 , Humanos , Microscopia Eletrônica de Varredura , Pseudópodes/ultraestrutura
16.
Nanomedicine ; 11(4): 879-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659648

RESUMO

Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs. FROM THE CLINICAL EDITOR: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.


Assuntos
Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/ultraestrutura , Cromatografia em Gel , Células HEK293 , Humanos , Ultrafiltração
17.
Bioconjug Chem ; 25(7): 1213-22, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24866260

RESUMO

We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer-protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection.


Assuntos
Cisteína/química , Proteínas ELAV/isolamento & purificação , Corantes Fluorescentes/química , Fragmentos de Peptídeos/química , RNA/metabolismo , Proteínas Recombinantes/química , Compostos de Enxofre/química , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , RNA/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
18.
EMBO J ; 32(8): 1115-27, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23511973

RESUMO

Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing.


Assuntos
Retículo Endoplasmático/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/análise , RNA Helicases DEAD-box/análise , Retículo Endoplasmático/química , Células HeLa , Humanos , Imunoprecipitação , Proteínas de Ligação a RNA/análise , Ribonuclease III/análise
19.
Mol Cancer Res ; 10(1): 167-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22049153

RESUMO

Commonly observed in colorectal cancer is the elevated expression of the prostaglandin (PG) synthase COX-2. In normal intestinal epithelium, the COX-2 mRNA is targeted for rapid decay through the 3'-untranslated region (3'-UTR) adenylate- and uridylate (AU)-rich element (ARE), whereas in tumors ARE-mediated decay is compromised. Here we show that the COX-2 ARE can mediate degradation through microRNA (miRNA)-mediated regulation. We identified miR-16 to bind the COX-2 3'-UTR and inhibit COX-2 expression by promoting rapid mRNA decay. In colorectal cancer cells and tumors, miR-16 levels were decreased approximately twofold and miR-16 expression in cancer cells attenuated COX-2 expression and PG synthesis. The COX-2 ARE is also bound by the RNA-binding protein HuR. In colorectal cancer tumors, HuR is overexpressed and localized within the cytoplasm, where it promotes ARE-mRNA stabilization. Under conditions of HuR overexpression, miR-16 was unable to promote rapid mRNA decay through the COX-2 ARE. Ribonucleoprotein immunoprecipitation of HuR showed direct association with miR-16 that was reversed when cytoplasmic trafficking of HuR was inhibited. Furthermore, this interaction between HuR and miR-16 promoted the downregulation of miR-16. These new results identify miR-16 as a central posttranscriptional regulator of COX-2 and show the ability of elevated levels of HuR to antagonize miR-16 function. Along with insight into altered ARE-mediated mRNA decay observed in colorectal cancer, these findings provide a new explanation for tumor-derived loss of miR-16.


Assuntos
Ciclo-Oxigenase 2/genética , Proteínas ELAV/fisiologia , MicroRNAs/antagonistas & inibidores , Animais , Células CACO-2 , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Células Cultivadas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/genética , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Transporte Proteico/genética , Estabilidade de RNA/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Células Tumorais Cultivadas
20.
J Neurooncol ; 106(3): 531-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21935689

RESUMO

Regulation of mRNA decay is an important mechanism controlling gene expression. Steady state levels of mRNAs can be markedly altered by changes in the decay rate. The control of mRNA stability depends on sequences in the transcript itself and on RNA-binding proteins that dynamically bind to these sequences. A well characterized sequence motif, which has been shown to be present in many short-lived mRNAs, is the de-stabilizing adenylate/uridylate-rich element (ARE) located at the 3' untranslated region (3'UTR) of mRNAs. HuR is an RNA-binding protein, which binds to AREs and in doing so, increases the half-life and steady state levels of the corresponding mRNA. Using tissue microarray technology, we found that HuR is over-expressed in human gliomas. We also found that there is a change in HuR localization from being solely in the nucleus to being expressed at high levels in the cytosol. Moreover, a positive correlation was found between total HuR levels, cytosolic localization and tumor grade. We also studied the decay rate of several HuR target mRNAs and found that these mRNAs have a slower rate of decay in glioma cell lines than in astrocytes. Finally, we have been able to decrease both the stability and steady state level of these transcripts in glioma cells using an RNA decoy. More importantly, the decoy transfected cells and cells exposed to a HuR inhibitor have reduced cell growth. In addition, pharmacological inhibition of HuR also resulted in glioma cell growth inhibition. In conclusion, our data suggest that post-transcriptional control abnormalities mediated by HuR are necessary to sustain the rapid growth of this devastating type of cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas ELAV/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Neoplasias Encefálicas/patologia , Fracionamento Celular/métodos , Linhagem Celular Tumoral , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Proteínas ELAV/metabolismo , Feminino , Glioma/patologia , Humanos , Indóis , Masculino , Análise Serial de Proteínas/métodos , Índice de Gravidade de Doença , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...