Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 847635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308262

RESUMO

Wheat is a major source of energy and nutrition worldwide, but it is also a primary cause of frequent diet-induced health issues, specifically celiac disease, for which the only effective therapy so far is strict dietary abstinence from gluten-containing grains. Wheat gluten proteins are grouped into two major categories: high-molecular-weight glutenin subunits (HMWgs), vital for mixing and baking properties, and gliadins plus low-molecular-weight glutenin subunits (LMWgs) that contain the overwhelming majority of celiac-causing epitopes. We put forth a hypothesis that eliminating gliadins and LMWgs while retaining HMWgs might allow the development of reduced-immunogenicity wheat genotypes relevant to most gluten-sensitive individuals. This hypothesis stems from the knowledge that the molecular structures and regulatory mechanisms of the genes encoding the two groups of gluten proteins are quite different, and blocking one group's transcription, without affecting the other's, is possible. The genes for gliadins and LMWgs have to be de-methylated by 5-methylcytosine DNA glycosylase/lyase (DEMETER) and an iron-sulfur (Fe-S) cluster biogenesis enzyme (DRE2) early during endosperm development to permit their transcription. In this study, a TILLING (Targeting Induced Local Lesions IN Genomes) approach was undertaken to identify mutations in the homoeologous DEMETER (DME) and DRE2 genes in common and durum wheat. Lines with mutations in these genes were obtained that displayed reduced content of immunogenic gluten proteins while retaining essential baking properties. Although our data at first glance suggest new possibilities for treating celiac disease and are therefore of medical and agronomical interest, it also shows that inducing mutations in the DME and DRE2 genes analyzed here affected pollen viability and germination. Hence there is a need to develop other approaches in the future to overcome this undesired effect.

2.
Front Nutr ; 7: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133368

RESUMO

Wheat gluten proteins are the known cause of celiac disease. The repetitive tracts of proline and glutamine residues in these proteins make them exceptionally resilient to digestion in the gastrointestinal tract. These indigested peptides trigger immune reactions in susceptible individuals, which could be either an allergic reaction or celiac disease. Gluten exclusion diet is the only approved remedy for such disorders. Recently, a combination of a glutamine specific endoprotease from barley (EP-B2), and a prolyl endopeptidase from Flavobacterium meningosepticum (Fm-PEP), when expressed in the wheat endosperm, were shown to reasonably detoxify immunogenic gluten peptides under simulated gastrointestinal conditions. However useful, these "glutenases" are limited in application due to their denaturation at high temperatures, which most of the food processes require. Variants of these enzymes from thermophilic organisms exist, but cannot be applied directly due to their optimum activity at temperatures higher than 37°C. Though, these enzymes can serve as a reference to guide the evolution of peptidases of mesophilic origin toward thermostability. Therefore, a sequence guided site-saturation mutagenesis approach was used here to introduce mutations in the genes encoding Fm-PEP and EP-B2. A thermostable variant of Fm-PEP capable of surviving temperatures up to 90°C and EP-B2 variant with a thermostability of up 60°C were identified using this approach. However, the level of thermostability achieved is not sufficient; the present study has provided evidence that the thermostability of glutenases can be improved. And this pilot study has paved the way for more detailed structural studies in the future to obtain variants of Fm-PEP and EP-B2 that can survive temperatures ~100°C to allow their packing in grains and use of such grains in the food industry.

3.
Nutrients ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810336

RESUMO

Celiac disease, wheat sensitivity, and allergy represent three different reactions, which may occur in genetically predisposed individuals on the ingestion of wheat and derived products with various manifestations. Improvements in the disease diagnostics and understanding of disease etiology unveiled that these disorders are widespread around the globe affecting about 7% of the population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible to follow because of the contamination of allegedly "gluten-free" products. Accidental contamination of inherently gluten-free products could take place at any level from field to shelf because of the ubiquity of these proteins/grains. Gluten contamination of allegedly "gluten-free" products is a constant threat to celiac patients and a major health concern. Several detection procedures have been proposed to determine the level of contamination in products for celiac patients. The present article aims to review the advantages and disadvantages of different gluten detection methods, with emphasis on the recent technology that allows identification of the immunogenic-gluten peptides without the use of antibodies. The possibility to detect gluten contamination by different approaches with similar or better detection efficiency in different raw and processed foods will guarantee the safety of the foods for celiac patients.


Assuntos
Doença Celíaca/dietoterapia , Dieta Livre de Glúten/métodos , Inocuidade dos Alimentos/métodos , Glutens/análise , Exposição Dietética/análise , Exposição Dietética/prevenção & controle , Humanos
4.
Funct Integr Genomics ; 19(1): 123-136, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30159724

RESUMO

Ubiquitous nature of prolamin proteins dubbed gluten from wheat and allied cereals imposes a major challenge in the treatment of celiac disease, an autoimmune disorder with no known treatment other than abstinence diet. Administration of hydrolytic glutenases as food supplement is an alternative to deliver the therapeutic agents directly to the small intestine, where sensitization of immune system and downstream reactions take place. The aim of the present research was to evaluate the capacity of wheat grain to express and store hydrolytic enzymes capable of gluten detoxification. For this purpose, wheat scutellar calli were biolistically transformed to generate plants expressing a combination of glutenase genes for prolamin detoxification. Digestion of prolamins with barley endoprotease B2 (EP-HvB2) combined with Flavobacterium meningosepticum prolyl endopeptidase (PE-FmPep) or Pyrococcus furiosus prolyl endopeptidase (PE-PfuPep) significantly reduced (up to 67%) the amount of the indigestible gluten peptides of all prolamin families tested. Seven of the 168 generated lines showed inheritance of transgene to the T2 generation. Reversed phase high-performance liquid chromatography of gluten extracts under simulated gastrointestinal conditions allowed the identification of five T2 lines that contained significantly reduced amounts of immunogenic, celiac disease-provoking gliadin peptides. These findings were complemented by the R5 ELISA test results where up to 72% reduction was observed in the content of immunogenic peptides. The developed wheat genotypes open new horizons for treating celiac disease by an intraluminal enzyme therapy without compromising their agronomical performance.


Assuntos
Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Glutens/metabolismo , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Biolística , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Chryseobacterium/enzimologia , Chryseobacterium/genética , Expressão Gênica , Engenharia Genética/métodos , Gliadina/imunologia , Gliadina/isolamento & purificação , Gliadina/metabolismo , Gliadina/farmacologia , Glutens/química , Glutens/imunologia , Hordeum/enzimologia , Hordeum/genética , Humanos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteólise , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Transgenes , Triticum/enzimologia
5.
PLoS One ; 9(6): e100998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967712

RESUMO

Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.


Assuntos
Adaptação Biológica , Variação Genética , Resistência a Herbicidas/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Acetolactato Sintase/química , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Cruzamento , Mapeamento Cromossômico , Análise por Conglomerados , Cruzamentos Genéticos , Ligação Genética , Genótipo , Repetições de Microssatélites , Noroeste dos Estados Unidos , Polimorfismo Genético , Domínios e Motivos de Interação entre Proteínas
6.
Nutrients ; 6(4): 1578-97, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24739977

RESUMO

Wheat prolamins, commonly known as "gluten", are a complex mixture of 71-78 proteins, which constitute ~80% of the proteins in the wheat grains and supply 50% of the global dietary protein demand. Prolamins are also responsible for numerous gluten-induced disorders and determine the unique visco-elastic properties of the wheat dough. These properties necessitate the reliable determination of the prolamin composition in wheat grains and their derived products. Therefore, this study examined the impact of HPLC conditions, including column type, column temperature, flow rate, and the gradient of polar and non-polar solvents in the mobile phase, to improve the analytical resolution of prolamins. The following conditions were found optimal for analyses: column temperature 60 °C, flow rate 1.0 mL/min and an elution gradient of 20%-60% of 0.1% trifluoroacetic acid + acetonitrile in 60 min. For further improvement of resolution, gliadin and glutenin extracts were analyzed using MALDI-TOF-MS in combination with HPLC fractionation. Two semi-quantitative methods, densitometry of stained polyacrylamide gels and HPLC, were used to determine relative prolamin quantities and the correspondence between the methods was established. The combinatorial gluten analyses approach developed during the present study was used to analyze prolamin profiles of wheat transformants expressing DEMETER silencing artificial microRNA, and the results are discussed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Gliadina/análise , Glutens/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triticum/química , Doença Celíaca/etiologia , Doença Celíaca/patologia , Fracionamento Químico , Eletroforese em Gel de Poliacrilamida , Gliadina/efeitos adversos , Glutens/efeitos adversos
7.
Proc Natl Acad Sci U S A ; 109(50): 20543-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184965

RESUMO

Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.


Assuntos
DNA Glicosilases/genética , Genes de Plantas , Hordeum/enzimologia , Hordeum/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Doença Celíaca/dietoterapia , Mapeamento Cromossômico , Clonagem Molecular , Ilhas de CpG , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA de Plantas/genética , Dieta Livre de Glúten , Proteínas Alimentares/efeitos adversos , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Triticum/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...