Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(1): 010603, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976715

RESUMO

We show that applying feedback and weak measurements to a quantum system induces phase transitions beyond the dissipative ones. Feedback enables controlling essentially quantum properties of the transition, i.e., its critical exponent, as it is driven by the fundamental quantum fluctuations due to measurement. Feedback provides the non-Markovianity and nonlinearity to the hybrid quantum-classical system, and enables simulating effects similar to spin-bath problems and Floquet time crystals with tunable long-range (long-memory) interactions.

2.
Phys Rev Lett ; 114(11): 113604, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839270

RESUMO

We show that the effect of measurement backaction results in the generation of multiple many-body spatial modes of ultracold atoms trapped in an optical lattice, when scattered light is detected. The multipartite mode entanglement properties and their nontrivial spatial overlap can be varied by tuning the optical geometry in a single setup. This can be used to engineer quantum states and dynamics of matter fields. We provide examples of multimode generalizations of parametric down-conversion, Dicke, and other states; investigate the entanglement properties of such states; and show how they can be transformed into a class of generalized squeezed states. Furthermore, we propose how these modes can be used to detect and measure entanglement in quantum gases.

3.
Phys Rev Lett ; 107(7): 073201, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902390

RESUMO

We consider dipolar interactions between heteronuclear molecules in a low-dimensional setup consisting of two one-dimensional tubes. We demonstrate that attraction between molecules in different tubes can overcome intratube repulsion and complexes with several molecules in the same tube are stable. In situ detection schemes of the few-body complexes are proposed. We discuss extensions to many tubes and layers, and outline the implications on many-body physics.


Assuntos
Gases/química , Fenômenos Físicos , Fenômenos Ópticos , Polímeros/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-11970501

RESUMO

We consider the nonlocal theory of a positive column in a glow discharge in two cases, where the mean free path of charged particles is either greater than the discharge tube radius (the free-flight regime) or much less than the radius (the collisional regime). The great bulk of electrons, which determines the density and the discharge current in the axial direction, appears to be trapped by the radial field of a positive column. The electron flux to the wall, which compensates for the ionization in a volume, is determined by fast electrons with energies of the order of wall potential, which are able to leave in a loss cone. The electron kinetic equation, which is solved by averaging it over the radial transits for the two regimes considered, permits us to obtain the electron density and the ionization rate. Thus, we develop the theory of a positive column for the non-Boltzmann electron distribution in the radial field. Under the free-flight regime, this theory is developed by analogy with the Langmuir-Tonks one. Under the collisional regime, the spatial distribution of the potential is obtained from the ion motion equation with the ambipolar diffusion coefficient, which depends on the radial coordinate. The concrete calculations are carried out for the xenon discharge under the free-flight and collisional regimes. The theoretical calculations are compared with the results of experiments on the measurements of the electric field and the densities of metastable and resonance xenon atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...