Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683161

RESUMO

The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast cancer associated fibroblasts (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in Her2+, ER+, and triple negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development.

2.
Methods Cell Biol ; 180: 127-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890926

RESUMO

Cancer survivors who have received thoracic radiation as part of their primary treatment are at risk for developing radiation-induced cardiotoxicity (RICT) due to incidental radiation delivered to the heart. In recent decades, advancements in radiation delivery have dramatically improved the therapeutic ratio of radiation therapy (RT)-efficiently targeting malignancies while sparing the heart; yet, in many patients, incidental radiation to the heart cannot be fully avoided. Cardiac radiation exposure can cause long-term morbidity and contribute to poorer survival in cancer patients. Severe cardiac effects can occur within 2years of treatment. Currently, there is no way to predict who is at higher or lower risk of developing cardiotoxicity from radiation, and the critical factors that alter RICT have not yet been clearly identified. Thus, pre-clinical investigations are an important step towards better prevention, detection, and management of RICT in cancer survivors. The overarching aim of this chapter is to provide researchers with foundational and technical knowledge in the use of mice and rats for RICT investigations. After a brief overview of RICT pathophysiology and clinical manifestations, we discuss important considerations of RICT study design, including animal selection and radiation planning. We then provide example protocols for murine tissue harvesting and processing that can support use in downstream applications of the reader's choosing.


Assuntos
Cardiotoxicidade , Neoplasias , Camundongos , Humanos , Ratos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/prevenção & controle , Roedores , Neoplasias/radioterapia , Coração
3.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477563

RESUMO

E-selectin is a vascular adhesion molecule expressed mainly on endothelium, and its primary role is to facilitate leukocyte cell trafficking by recognizing ligand surface proteins. E-selectin gained a new role since it was demonstrated to be involved in cancer cell trafficking, stem-like properties and therapy resistance. Therefore, being expressed in the tumor microenvironment, E-selectin can potentially be used to eradicate cancer. Uproleselan (also known as GMI-1271), a specific E-selectin antagonist, has been tested on leukemia, myeloma, pancreatic, colon and breast cancer cells, most of which involve the bone marrow as a primary or as a metastatic tumor site. This novel therapy disrupts the tumor microenvironment by affecting the two main steps of metastasis-extravasation and adhesion-thus blocking E-selectin reduces tumor dissemination. Additionally, uproleselan mobilized cancer cells from the protective vascular niche into the circulation, making them more susceptible to chemotherapy. Several preclinical and clinical studies summarized herein demonstrate that uproleselan has favorable safety and pharmacokinetics and is a tumor microenvironment-disrupting agent that improves the efficacy of chemotherapy, reduces side effects such as neutropenia, intestinal mucositis and infections, and extends overall survival. This review highlights the critical contribution of E-selectin and its specific antagonist, uproleselan, in the regulation of cancer growth, dissemination, and drug resistance in the context of the bone marrow microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...