Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 5(4): 287-96, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15320735

RESUMO

Most proteins function as multiprotein complexes or interact with multiprotein complexes. Identification of protein-protein interactions in the context of their physiologically relevant complexes is therefore key to fully understand the cellular machinery. Here I discuss advances in chemical crosslinking methods that allow investigators to map direct subunit contacts in transient interactions with multimeric complexes. Methods discussed fall into two categories: (i) in vitro approaches with localized, inducible crosslinking reagents and (ii) in vivo approaches with unlocalized crosslinkers.


Assuntos
Reagentes de Ligações Cruzadas/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Imunoprecipitação da Cromatina , Fotoquímica , Ligação Proteica , Proteínas/imunologia , Fatores de Transcrição/metabolismo
2.
EMBO J ; 20(4): 841-51, 2001 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11179228

RESUMO

Regulation of the GAL genes of Saccharomyces cerevisiae is determined by the interplay of the transcriptional activator Gal4p and the repressor Gal80p, which binds and masks the activation domain of Gal4p under non-inducing conditions. Here we demonstrate that Gal80p dimerizes with high affinity and that this dimerization appears to stabilize the Gal4p-Gal80p interaction and also, indirectly, the Gal4p-DNA interaction in a (Gal4p)2(Gal80p)2DNA complex. In addition, Gal80 dimers transiently interact with each other to form higher order multimers. We provide evidence that adjacent Gal4p binding sites, when correctly spaced, greatly stabilize Gal80p dimer-dimer interactions and that this stabilization results in the complete repression of GAL genes with multiple Gal4p binding sites. In contrast, GAL genes under the control of a single Gal4p binding site do not stabilize Gal80p multimers, resulting in significant and biologically important transcriptional leakage. Cooperative binding experiments indicate that Gal80p dimer-dimer interaction probably does not lead to a stronger Gal4p-Gal80p interaction, but most likely to a more complete shielding of the Gal4p activation domain.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Dimerização , Ligação Proteica , Saccharomyces cerevisiae/genética
3.
J Mol Biol ; 301(5): 1097-112, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10966808

RESUMO

Activation domains (ADs) appear to work by making specific protein-protein contacts with the transcriptional machinery. However, ADs show no apparent sequence conservation, they can be functionally replaced by a number of random peptides and unrelated proteins, and their function does not depend on sustaining a complex tertiary structure. To gain a broader perspective on the nature of interactions between acidic ADs and several of their proposed targets, the in vivo strengths of viral, human, yeast, and artificial activation domains were determined under physiological conditions, and mutant ADs with increased in vivo potencies were selected. The affinities between ADs and proposed targets were determined in vitro and all interactions were found to be of low-level affinity with dissociation constants above 10(-7)M. However, in vivo potencies of all ADs correlated nearly perfectly with their affinities for transcriptional proteins. Surprisingly, the weak interactions of the different ADs with at least two non-transcriptional proteins show the same rank order of binding and AD mutants selected for increased in vivo strength also have increased affinities to non-transcriptional proteins. Based on these results, isolated acidic ADs can bind with relatively low-level specificity and affinity to many different proteins and the strength of these semi-specific interactions determine the strength of an AD. I suggest that ADs expose flexible hydrophobic elements in an aqueous environment to contact hydrophobic patches over short distances, shifting specificity of activators largely to the DNA colocalization of arrays of ADs and targets.


Assuntos
Proteínas Fúngicas/metabolismo , Muramidase/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional , Adenosina Trifosfatases , Sequência de Aminoácidos , Animais , Calibragem , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteína Vmw65 do Vírus do Herpes Simples/química , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Ponto Isoelétrico , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Especificidade por Substrato , Proteína de Ligação a TATA-Box , Termodinâmica , Fator de Transcrição TFIIB , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Gene ; 247(1-2): 53-61, 2000 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-10773444

RESUMO

UAS-less reporter plasmids are widespread and powerful tools for the identification and analysis of binding sites for transcriptional activators. The common reporter plasmids for the yeast Saccharomyces cerevisiae are multicopy (2mu) vectors with the CYC1 core promoter upstream of the lacZ gene. Insertion of putative or known activator binding sites upstream of the core promoter puts lacZ (beta-galactosidase) expression under the control of the corresponding activator. Although these constructs have proved to work well for most purposes, they have certain limitations: (1) they give significant and carbon-source-dependent lacZ background expression; (2) unlike most other yeast promoters, the CYC1 upstream region has a partially open chromatin structure with an accessible TATA box; (3) they use only a single, moderately sensitive reporter; and (4) the use of multicopy vectors can result in activator titration. Here, we introduce novel reporter plasmids based on the yeast MEL1 (alpha-galactosidase) gene that can overcome all of these limitations. It is also shown that background expression is due to fortuitous activator binding sites within the plasmid backbones that are insufficiently shielded from the core promoters in the common CYC1 reporter plasmids.


Assuntos
Citocromos c , Genes Reporter/genética , Plasmídeos/genética , Proteínas de Saccharomyces cerevisiae , Sítios de Ligação , Grupo dos Citocromos c/genética , Galactose/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Glicerol/farmacologia , Óperon Lac/genética , Maltose/farmacologia , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Reguladoras de Ácido Nucleico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Sensibilidade e Especificidade , Transativadores/metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , beta-Galactosidase/efeitos dos fármacos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
5.
Anal Biochem ; 277(1): 109-20, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10610695

RESUMO

A modular series of versatile expression vectors is described for improved affinity purification of recombinant fusion proteins. Special features of these vectors include (i) serial affinity tags (hexahistidine-GST) to yield extremely pure protein even with very low expression rates, (ii) highly efficient proteolytic cleavage of affinity tags under a variety of conditions by hexahistidine-tagged tobacco etch virus (TEV) protease, (iii) PCR cloning design that results in a product of proteolytic cleavage with only one (a single glycine) or two (gly-ala) amino acids at the N-terminus of the protein, and (iv) expression in either Escherichia coli or Saccharomyces cerevisiae. In addition, singly hexahistidine-tagged proteins can be produced for purification under denaturing conditions and some vectors allow addition of five amino acid kinase recognition sites for easy radiolabeling of proteins. To illustrate the use of these vectors, all regulatory components of the yeast GAL regulon, rather than abundant highly soluble proteins, were produced and purified under native or denaturing conditions, and their biological activity was confirmed.


Assuntos
Vetores Genéticos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , Primers do DNA , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glutationa Transferase/biossíntese , Glutationa Transferase/química , Glutationa Transferase/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Curr Biol ; 8(8): 452-8, 1998 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-9550700

RESUMO

BACKGROUND: The promoter regions of most eukaryotic genes contain binding sites for more than one transcriptional activator and these activators often bind cooperatively to promoters. The most common type of cooperativity is supported by direct protein-protein interactions. Recent studies have shown that proteins that do not specifically interact with one another can bind cooperatively to chromatin in vitro. probably by the localized destabilization of nucleosome structure by one factor, facilitating binding of another to a nearby site. This mechanism does not require that the transcription factors have activation domains. We have examined whether this phenomenon occurs in vivo. RESULTS: Unrelated non-interacting proteins can bind DNA cooperatively in yeast cells; this cooperative binding can contribute significantly to transcriptional activation, does not require that both factors have activation domains and is only operative over relatively short distances. In addition to this 'short-range' mechanism, unrelated non-interacting proteins can bind cooperatively to sites separated by hundreds of base pairs, so long as both have potent activation domains. CONCLUSION: Cooperative binding of transcription factors in vivo can occur by several mechanisms, some of which do not require direct protein-protein interactions and which cannot be detected in vitro using naked DNA templates. These findings must be taken into account when evaluating mechanisms for synergistic transcriptional activation.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos c , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases/metabolismo , Fatores de Transcrição , Ativação Transcricional/genética , Proteínas de Bactérias/genética , Grupo dos Citocromos c/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Óperon Lac/genética , Modelos Genéticos , Regiões Operadoras Genéticas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Serina Endopeptidases/genética , alfa-Galactosidase/genética
7.
Chem Biol ; 3(7): 551-9, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8807887

RESUMO

BACKGROUND: To study very large macromolecular complexes, it would be useful to be able to incorporate probe molecules, such as fluorescent tags or photoactivatable crosslinkers, into specific sites on proteins. Current methods for doing this use relatively large amounts of highly purified protein, limiting the general utility of these approaches. The need for covalent posttranslational chemistry also makes it extremely difficult to use modified proteins in studies of native complexes in crude lysates or in living cells. We set out to develop a protein tag that would circumvent these problems. RESULTS: A very simple type of molecular recognition, metal-ligand complexation, can be used to deliver a nickel-based crosslinking reagent to proteins containing a six-histidine (His6) tag. When activated with a peracid, the His6-Ni complex mediates oxidative crosslinking of nearby proteins. The crosslinking reaction does not involve freely diffusible intermediates, and thus only those proteins in close proximity to the His6-tagged polypeptide are crosslinked. CONCLUSIONS: The His6 tag, commonly used as an affinity handle for the purification of recombinant proteins, can also be used as an internal receptor for an oxidative protein-crosslinking reagent. No covalent protein modifications are necessary, since the His6 tag is introduced at the DNA level. The crosslinking reaction is fast, efficient in most cases, and provides products that are easily separated from most other proteins present. This methodology should find widespread use in the study of multiprotein complexes.


Assuntos
Proteínas/química , Sítios de Ligação , Reagentes de Ligações Cruzadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Histidina/química , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Complexos Multiproteicos , Oxirredução , Engenharia de Proteínas , Rad51 Recombinase , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Curr Genet ; 27(6): 501-8, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7553933

RESUMO

Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.


Assuntos
Proteínas de Ligação a DNA , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transaminases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , DNA Fúngico/genética , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Dados de Sequência Molecular , Peso Molecular , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Mapeamento por Restrição , Saccharomyces cerevisiae/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Serina/farmacologia , Transaminases/química
9.
Mol Cell Biol ; 15(5): 2839-48, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7739564

RESUMO

A major goal in understanding eukaryotic gene regulation is to identify the target(s) of transcriptional activators. Efforts to date have pointed to various candidates. Here we show that a 34-amino-acid peptide from the carboxy terminus of GAL4 is a strong activation domain (AD) and retains at least four proteins from a crude extract: the negative regulator GAL80, the TATA-binding protein (TBP), and the putative coactivators SUG1 and ADA2. TFIIB was not retained. Concentrating on TBP, we demonstrate in in vitro binding assays that its interaction with the AD is specific, direct, and salt stable up to at least 1.6 M NaCl. The effects of mutations in the GAL4 AD on transcriptional activation in vivo correlate with their affinities to TBP. A point mutation (L114K) in yeast TBP, which has been shown to compromise the mutant protein in both binding to the VP16 AD domain and activated transcription in vitro, reduces the affinity to the GAL4 AD to the same degree as to the VP16 AD. This suggests that these two prototypic activators make similar contacts with TBP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box , Fatores de Transcrição/genética , Ativação Transcricional
10.
Nature ; 374(6517): 88-91, 1995 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-7870180

RESUMO

Biochemical and genetic studies suggest the existence of mediators that work between the activation domains (ADs) of regulatory proteins and the basic transcriptional machinery. We have previously shown genetically that Sug1 interacts with the AD of the yeast activator Ga14. Here we provide evidence that the Sug1 protein of yeast binds directly to the ADs of Ga14 and the viral activator, VP16. Sug1 protein is associated with the TATA-binding protein in vivo and binds to it in vitro, consistent with a mediator function. We also demonstrate that Sug1 is not a component of the 26S proteasome, contrary to previous reports. Sug1 is a member of a large, highly conserved family of ATPases, implying a role for ATP hydrolysis in the activation of transcription.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cisteína Endopeptidases/metabolismo , Escherichia coli , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Proteína de Ligação a TATA-Box , Transcrição Gênica
12.
Curr Genet ; 21(4-5): 295-300, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1326413

RESUMO

Serine and glycine biosynthesis in yeast proceed by two pathways: a "glycolytic" pathway, using 3-phosphoglycerate, and a "gluconeogenic" pathway, using glyoxylate. We used a mutation in the cat1 gene to abolish the glucose-repressible "gluconeogenic" pathway and re-isolated two mutants, ser1 and ser2, in the "glycolytic" pathway. The ser1 mutation corresponded to phosphoserine transaminase and ser2 to that of phosphoserine phosphatase. Mutagenesis of a ser1 ser2 cat1 triple mutant facilitated the isolation of a mutation in a new gene, SER10. SER10 appears to be part of a pathway which, under normal growth conditions, is less important in serine biosynthesis. The ser1 ser2 ser10 triple mutants were totally serine auxotrophic on glucose media but serine prototrophic during growth on non-fermentable carbon sources. This phenotype was used to select for possible regulatory mutants that synthesize serine by the gluconeogenic pathway even in the presence of glucose, e.g., with a non-glucose repressible glyoxylate cycle. In an alternative approach to isolate such mutants URA3 and TRP1 expression were placed under the control of the glucose-repressible FBP1 (fructose-1,6-bisphosphatase) promoter. Although both systems resulted in strong selection pressure we could not isolate constitutively derepressed mutants. These results indicate that transcription of glucose-repressible gluconeogenic enzymes is mainly dependent on positive regulatory elements.


Assuntos
Gluconeogênese/genética , Glucose/metabolismo , Glicólise/genética , Saccharomyces cerevisiae/metabolismo , Serina/biossíntese , Sequência de Bases , Frutose-Bifosfatase/genética , Genes Fúngicos/genética , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/genética , Triptofano/biossíntese , Uracila/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...