Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812025

RESUMO

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Sequenciamento Completo do Genoma , Genômica , Neoplasias Ósseas/genética , Recidiva , Variações do Número de Cópias de DNA , Mutação
2.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36711976

RESUMO

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

3.
Cancer Res ; 81(8): 2002-2014, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33632898

RESUMO

Pancreatic adenocarcinoma (PDAC) epitomizes a deadly cancer driven by abnormal KRAS signaling. Here, we show that the eIF4A RNA helicase is required for translation of key KRAS signaling molecules and that pharmacological inhibition of eIF4A has single-agent activity against murine and human PDAC models at safe dose levels. EIF4A was uniquely required for the translation of mRNAs with long and highly structured 5' untranslated regions, including those with multiple G-quadruplex elements. Computational analyses identified these features in mRNAs encoding KRAS and key downstream molecules. Transcriptome-scale ribosome footprinting accurately identified eIF4A-dependent mRNAs in PDAC, including critical KRAS signaling molecules such as PI3K, RALA, RAC2, MET, MYC, and YAP1. These findings contrast with a recent study that relied on an older method, polysome fractionation, and implicated redox-related genes as eIF4A clients. Together, our findings highlight the power of ribosome footprinting in conjunction with deep RNA sequencing in accurately decoding translational control mechanisms and define the therapeutic mechanism of eIF4A inhibitors in PDAC. SIGNIFICANCE: These findings document the coordinate, eIF4A-dependent translation of RAS-related oncogenic signaling molecules and demonstrate therapeutic efficacy of eIF4A blockade in pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Quadruplex G , Genes ras/genética , Humanos , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Helicases , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Triterpenos/farmacologia , Proteínas de Sinalização YAP , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
4.
Proc Natl Acad Sci U S A ; 117(48): 30670-30678, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199632

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Antineoplásicos/uso terapêutico , Benzodioxóis/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Expressão Gênica , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Cell ; 38(2): 198-211.e8, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559497

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Splicing de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
J Pharmacol Exp Ther ; 374(2): 252-263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493725

RESUMO

Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer disease and other tauopathies. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification, and O-GlcNAcylation of tau has been shown to influence tau phosphorylation and aggregation. Inhibition of O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc moieties, is a novel strategy to attenuate the formation of pathologic tau. Here we described the in vitro and in vivo pharmacological properties of a novel and selective OGA inhibitor, MK-8719. In vitro, this compound is a potent inhibitor of the human OGA enzyme with comparable activity against the corresponding enzymes from mouse, rat, and dog. In vivo, oral administration of MK-8719 elevates brain and peripheral blood mononuclear cell O-GlcNAc levels in a dose-dependent manner. In addition, positron emission tomography imaging studies demonstrate robust target engagement of MK-8719 in the brains of rats and rTg4510 mice. In the rTg4510 mouse model of human tauopathy, MK-8719 significantly increases brain O-GlcNAc levels and reduces pathologic tau. The reduction in tau pathology in rTg4510 mice is accompanied by attenuation of brain atrophy, including reduction of forebrain volume loss as revealed by volumetric magnetic resonance imaging analysis. These findings suggest that OGA inhibition may reduce tau pathology in tauopathies. However, since hundreds of O-GlcNAcylated proteins may be influenced by OGA inhibition, it will be critical to understand the physiologic and toxicological consequences of chronic O-GlcNAc elevation in vivo. SIGNIFICANCE STATEMENT: MK-8719 is a novel, selective, and potent O-linked N-acetylglucosamine (O-GlcNAc)-ase (OGA) inhibitor that inhibits OGA enzyme activity across multiple species with comparable in vitro potency. In vivo, MK-8719 elevates brain O-GlcNAc levels, reduces pathological tau, and ameliorates brain atrophy in the rTg4510 mouse model of tauopathy. These findings indicate that OGA inhibition may be a promising therapeutic strategy for the treatment of Alzheimer disease and other tauopathies.


Assuntos
Inibidores Enzimáticos/farmacologia , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Proteínas tau/metabolismo , Animais , Atrofia/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Células PC12 , Ratos , Tauopatias/patologia , Tauopatias/fisiopatologia
7.
Mod Pathol ; 33(9): 1822-1831, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32350415

RESUMO

Entosis is a type of regulated cell death that promotes cancer cell competition. Though several studies have revealed the molecular mechanisms that govern entosis, the clinical and genetic correlates of entosis in human tumors is less well understood. Here we reviewed entotic cell-in-cell (CIC) patterns in a large single institution sequencing cohort (MSK IMPACT clinical sequencing cohort) of more than 1600 human pancreatic ductal adenocarcinoma (PDAC) samples to identify the genetic and clinical correlates of this cellular feature. After case selection, 516 conventional PDACs and 21 ASCs entered this study and ~45,000 HPFs (median 80 HPFs per sample) were reviewed; 549 entotic-CICs were detected through our cohort. We observed that entotic-CIC occurred more frequently in liver metastasis compared with primary in PDAC. Moreover, poorly differentiated adenocarcinoma or adenosquamous carcinoma had more entotic-CIC than well or moderately differentiated adenocarcinoma. With respect to genetic features TP53 mutations, KRAS amplification, and MYC amplification were significantly associated with entosis in PDAC tissues. From a clinical standpoint entotic CICs were independently associated with a poor prognosis by multivariate Cox regression analysis when considering all cases or primary PDACs specifically. These results provide a contextual basis for understanding entosis in PDAC, a highly aggressive cancer for which molecular insights are needed to improve survival.


Assuntos
Carcinoma Ductal Pancreático/genética , Entose/fisiologia , Mutação , Neoplasias Pancreáticas/genética , Idoso , Carcinoma Ductal Pancreático/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
8.
Cancer Discov ; 10(6): 792-805, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193223

RESUMO

Surgery is the only curative option for stage I/II pancreatic cancer; nonetheless, most patients will experience a recurrence after surgery and die of their disease. To identify novel opportunities for management of recurrent pancreatic cancer, we performed whole-exome or targeted sequencing of 10 resected primary cancers and matched intrapancreatic recurrences or distant metastases. We identified that recurrent disease after adjuvant or first-line platinum therapy corresponds to an increased mutational burden. Recurrent disease is enriched for genetic alterations predicted to activate MAPK/ERK and PI3K-AKT signaling and develops from a monophyletic or polyphyletic origin. Treatment-induced genetic bottlenecks lead to a modified genetic landscape and subclonal heterogeneity for driver gene alterations in part due to intermetastatic seeding. In 1 patient what was believed to be recurrent disease was an independent (second) primary tumor. These findings suggest routine post-treatment sampling may have value in the management of recurrent pancreatic cancer. SIGNIFICANCE: The biological features or clinical vulnerabilities of recurrent pancreatic cancer after pancreaticoduodenectomy are unknown. Using whole-exome sequencing we find that recurrent disease has a distinct genomic landscape, intermetastatic genetic heterogeneity, diverse clonal origins, and higher mutational burden than found for treatment-naïve disease.See related commentary by Bednar and Pasca di Magliano, p. 762.This article is highlighted in the In This Issue feature, p. 747.


Assuntos
Carcinoma Ductal Pancreático/genética , Metástase Neoplásica/genética , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/secundário , Evolução Molecular , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas/patologia , Sequenciamento do Exoma
9.
Nat Cancer ; 1(1): 59-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-35118421

RESUMO

Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Cromatina , Humanos , Neoplasias Pancreáticas/genética , Filogenia , Neoplasias Pancreáticas
10.
Cancer Res ; 77(8): 1868-1879, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28386018

RESUMO

Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868-79. ©2017 AACR.


Assuntos
Carcinoma Ductal Pancreático/patologia , Células Neuroendócrinas/patologia , Pâncreas/inervação , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/patologia , Células Receptoras Sensoriais/patologia , Células 3T3 , Animais , Carcinogênese , Modelos Animais de Doenças , Gânglios Espinais/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Neuroendócrinas/metabolismo , Pâncreas/patologia , Fator de Transcrição STAT3/metabolismo , Células Receptoras Sensoriais/metabolismo , Substância P/biossíntese
11.
Mol Neurodegener ; 10: 14, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25881209

RESUMO

BACKGROUND: Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. RESULTS: Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. CONCLUSION: The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be detected well before the histological detection of NFTs. Therapeutic treatment targeting tau should therefore aim to reduce all tau species associated with the pathological tau pool rather than reduce specific post-translational modifications. There is still much to learn about CSF tau in physiological and pathological processes in order to use it as a translational biomarker in drug discovery.


Assuntos
Encéfalo/metabolismo , Processamento de Proteína Pós-Traducional/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional/fisiologia , Tauopatias/genética
12.
J Exp Med ; 204(8): 1999-2008, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17664291

RESUMO

Cerebrovascular dysfunction contributes to the pathology and progression of Alzheimer's disease (AD), but the mechanisms are not completely understood. Using transgenic mouse models of AD (TgCRND8, PDAPP, and Tg2576), we evaluated blood-brain barrier damage and the role of fibrin and fibrinolysis in the progression of amyloid-beta pathology. These mouse models showed age-dependent fibrin deposition coincident with areas of blood-brain barrier permeability as demonstrated by Evans blue extravasation. Three lines of evidence suggest that fibrin contributes to the pathology. First, AD mice with only one functional plasminogen gene, and therefore with reduced fibrinolysis, have increased neurovascular damage relative to AD mice. Conversely, AD mice with only one functional fibrinogen gene have decreased blood-brain barrier damage. Second, treatment of AD mice with the plasmin inhibitor tranexamic acid aggravated pathology, whereas removal of fibrinogen from the circulation of AD mice with ancrod treatment attenuated measures of neuroinflammation and vascular pathology. Third, pretreatment with ancrod reduced the increased pathology from plasmin inhibition. These results suggest that fibrin is a mediator of inflammation and may impede the reparative process for neurovascular damage in AD. Fibrin and the mechanisms involved in its accumulation and clearance may present novel therapeutic targets in slowing the progression of AD.


Assuntos
Doença de Alzheimer/genética , Fibrina/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fibrina/fisiologia , Fibrinogênio/metabolismo , Inflamação , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Permeabilidade , Plasminogênio/metabolismo , Ácido Tranexâmico/química
13.
J Pharmacol Exp Ther ; 322(1): 265-73, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17429057

RESUMO

Sympathetic neurons synthesize, transport, and release tissue-type plasminogen activators (t-PAs) and urinary-type plasminogen activators (u-PAs). We reported that t-PA enhances sympathetic neurotransmission and exacerbates reperfusion arrhythmias. We have now assessed the role of u-PA and plasminogen. Neurogenic contractile responses to electrical field stimulation (EFS) were determined in vasa deferentia (VD) from mice lacking t-PA (t-PA(-/-)), plasminogen activator inhibitor-1 (PAI-1(-/-)), plasminogen (plgn(-/-)), u-PA (u-PA(-/-)), and wild-type (WT) controls. Similar levels of t-PA were present in VD and cardiac synaptosomes of WT, PAI-1(-/-), plgn(-/-), and u-PA(-/-) mice, whereas t-PA was undetectable in t-PA(-/-) tissues. EFS responses were potentiated and attenuated in VD from PAI-1(-/-) and t-PA(-/-) mice, respectively, but indistinguishable from WT responses in VD from plgn(-/-) and u-PA(-/-) mice. Moreover, t-PA inhibition with t-PA(stop) decreased EFS response in WT mice, whereas u-PA(stop) did not. VD responses to ATP, norepinephrine, and K(+) in t-PA(-/-), PAI-1(-/-), plgn(-/-), and u-PA(-/-) mice were similar to those in WT, whereas t-PA(stop) did not modify VD responses to norepinephrine in WT, t-PA(-/-), and PAI-1(-/-) mice, indicating a prejunctional site of action for t-PA-induced potentiation of sympathetic neurotransmission. Indeed, K(+)-induced norepinephrine exocytosis from cardiac synaptosomes was potentiated in PAI-1(-/-), attenuated in t-PA(-/-) and not different from WT in u-PA(-/-) and plgn(-/-) mice. Likewise, ATP exocytosis was decreased in t-PA(-/-) and attenuated by t-PA(stop) in WT mice. Thus, t-PA-induced enhancement of sympathetic neurotransmission is a prejunctional event associated with increased transmitter exocytosis and independent of u-PA and plasminogen availability. This novel t-PA action may be a potential therapeutic target in hyperadrenergic states.


Assuntos
Plasminogênio/fisiologia , Sistema Nervoso Simpático/fisiologia , Ativador de Plasminogênio Tecidual/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Estimulação Elétrica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
14.
Proc Natl Acad Sci U S A ; 102(50): 18201-6, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16330749

RESUMO

Repeated stress can impair function in the hippocampus, a brain structure essential for learning and memory. Although behavioral evidence suggests that severe stress triggers cognitive impairment, as seen in major depression or posttraumatic stress disorder, little is known about the molecular mediators of these functional deficits in the hippocampus. We report here both pre- and postsynaptic effects of chronic stress, manifested as a reduction in the number of NMDA receptors, dendritic spines, and expression of growth-associated protein-43 in the cornu ammonis 1 region. Strikingly, the stress-induced decrease in NMDA receptors coincides spatially with sites of plasminogen activation, thereby predicting a role for tissue plasminogen activator (tPA) in this form of stress-induced plasticity. Consistent with this possibility, tPA-/- and plasminogen-/- mice are protected from stress-induced decrease in NMDA receptors and reduction in dendritic spines. At the behavioral level, these synaptic and molecular signatures of stress-induced plasticity are accompanied by impaired acquisition, but not retrieval, of hippocampal-dependent spatial learning, a deficit that is not exhibited by the tPA-/- and plasminogen-/- mice. These findings establish the tPA/plasmin system as an important mediator of the debilitating effects of prolonged stress on hippocampal function at multiple levels of neural organization.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasminogênio/metabolismo , Estresse Fisiológico/fisiopatologia , Ativador de Plasminogênio Tecidual/metabolismo , Análise de Variância , Animais , Western Blotting , Espinhas Dendríticas/patologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Plasminogênio/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Restrição Física , Estresse Fisiológico/metabolismo , Ativador de Plasminogênio Tecidual/genética
15.
Thromb Haemost ; 93(4): 655-60, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15841309

RESUMO

Although conventionally associated with fibrin clot degradation, recent work has uncovered new functions for the tissue plasminogen activator (tPA)/plasminogen cascade in central nervous system physiology and pathology. This extracellular proteolytic cascade has been shown to have roles in learning and memory, stress, neuronal degeneration, addiction and Alzheimer's disease. The current review considers the different ways tPA functions in the brain.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Neurônios/patologia , Neurônios/fisiologia , Sinapses/fisiologia , Ativador de Plasminogênio Tecidual/genética
16.
Proc Natl Acad Sci U S A ; 102(2): 443-8, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15630096

RESUMO

Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.


Assuntos
Etanol/efeitos adversos , Receptores de N-Metil-D-Aspartato/fisiologia , Convulsões/etiologia , Síndrome de Abstinência a Substâncias/etiologia , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
17.
J Neurosci ; 23(26): 8867-71, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14523088

RESUMO

Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/farmacocinética , Peptídeos beta-Amiloides/farmacologia , Animais , Modelos Animais de Doenças , Ativação Enzimática/genética , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Regulação para Cima
18.
J Mol Neurosci ; 20(3): 287-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14501010

RESUMO

Alzheimer's disease (AD) is the leading cause of cognitive decline in aged individuals. The pathological hallmarks of AD include the formation of neurofibrillary tangles, along with senile plaques that are mainly composed of the amyloid-beta (Abeta) peptide. Several lines of evidence implicate the tPA/plasmin system in AD. One type of cell death observed in AD is excitotoxic neuronal damage, and the tPA/plasmin system participates in excitotoxic cell death. Recent in vitro experiments report that the addition of aggregated Abeta peptide to primary cortical neurons leads to the up-regulation of tPA mRNA expression. Additionally, plasmin (activated by tPA) attenuates Abeta neurotoxicity by degrading the peptide and rendering it inactive. However, there is no evidence to demonstrate an in vivo contribution of the tPA/plasmin system in AD. We are currently examining the effects of the tPA/plasmin system on the deposition and toxicity of the Abeta peptide with in vivo paradigms of AD. We hope to define the contribution of the tPA/plasmin system in the development of AD pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/metabolismo , Plasminogênio/deficiência , Plasminogênio/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ativador de Plasminogênio Tecidual/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
19.
Nat Neurosci ; 6(2): 168-74, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12524546

RESUMO

Although neuronal stress circuits have been identified, little is known about the mechanisms that underlie the stress-induced neuronal plasticity leading to fear and anxiety. Here we found that the serine protease tissue-plasminogen activator (tPA) was upregulated in the central and medial amygdala by acute restraint stress, where it promoted stress-related neuronal remodeling and was subsequently inhibited by plasminogen activator inhibitor-1 (PAI-1). These events preceded stress-induced increases in anxiety-like behavior of mice. Mice in which the tPA gene has been disrupted did not show anxiety after up to three weeks of daily restraint and showed attenuated neuronal remodeling as well as a maladaptive hormonal response. These studies support the idea that tPA is critical for the development of anxiety-like behavior after stress.


Assuntos
Tonsila do Cerebelo/enzimologia , Transtornos de Ansiedade/enzimologia , Vias Neurais/enzimologia , Neurônios/enzimologia , Estresse Fisiológico/enzimologia , Ativador de Plasminogênio Tecidual/deficiência , Tonsila do Cerebelo/citologia , Animais , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Doença Crônica , Corticosterona/sangue , Feminino , Proteína GAP-43/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Vias Neurais/citologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Restrição Física , Estresse Fisiológico/fisiopatologia , Ativador de Plasminogênio Tecidual/genética
20.
Ann N Y Acad Sci ; 977: 258-65, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12480759

RESUMO

Cerebral amyloid beta-protein angiopathy (CAA) is a key pathological feature of patients with Alzheimer's disease and certain related disorders. Several mutations have been identified within the Abeta region of the Abeta protein precursor (AbetaPP) gene that appear to enhance the severity of CAA. A new mutation has been identified within the Abeta region (D23N) of AbetaPP that is associated with severe CAA in an Iowa kindred. Recently, we showed that E22Q Dutch, D23N Iowa, and E22Q/D23N Dutch/Iowa double-mutant Abeta40 peptides rapidly assemble in solution to form fibrils compared to wild-type Abeta40. Similarly, the E22Q Dutch and D23N Iowa Abeta40 peptides were found to induce robust pathologic responses in cultured human cerebrovascular smooth muscle (HCSM) cells, including elevated levels of cell-associated AbetaPP, proteolytic breakdown of actin, and cell death. Double-mutant E22Q/D23N Dutch/Iowa Abeta40 was more potent than either single-mutant form of Abeta in causing pathologic responses in HCSM cells. These in vitro data suggested that the E22Q Dutch and D23N Iowa substitutions promote fibrillogenesis and the pathogenicity of Abeta towards HCSM cells. Moreover, the presence of both CAA substitutions in the same Abeta peptide further enhances the fibrillogenic and pathogenic properties of Abeta. We also have generated transgenic mouse models to examine the effects of single and double CAA mutations in AbetaPP in vivo. Preliminary analysis of transgenic mouse brains indicates that expression of double-mutant E22Q/D23N Dutch/Iowa AbetaPP leads to robust deposition of Abeta in a vascular-weighted manner.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Angiopatia Amiloide Cerebral Familiar/genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Bélgica , Angiopatia Amiloide Cerebral Familiar/classificação , Angiopatia Amiloide Cerebral Familiar/patologia , Humanos , Iowa , Dados de Sequência Molecular , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...