Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536056

RESUMO

Range expansions, whether they are biological invasions or climate change-mediated range shifts, may have profound ecological and evolutionary consequences for plant-soil interactions. Range-expanding plants encounter soil biota with which they have a limited coevolutionary history, especially when introduced to a new continent. Past studies have found mixed results on whether plants experience positive or negative soil feedback interactions in their novel range, and these effects often change over time. One important theoretical explanation is that plants locally adapt to the soil pathogens and mutualists in their novel range. We tested this hypothesis in Dittrichia graveolens, an annual plant that is both expanding its European native range, initially coinciding with climate warming, and rapidly invading in California after human introduction. In parallel greenhouse experiments on both continents, we used plant genotypes and soils from five locations at the core and edge of each range to compare plant growth in soil inhabited by D. graveolens and nearby control microsites as a measure of plant-soil feedback. Plant-soil interactions were highly idiosyncratic across each range. On average, plant-soil feedbacks were more positive in the native range than in the exotic range. In line with the strongly heterogeneous pattern of soil responses along our biogeographic gradients, we found no evidence for evolutionary differentiation between plant genotypes from the core to edge of either range. Our results suggest that the evolution of plant-soil interactions during range expansion may be more strongly driven by local evolutionary dynamics varying across the range than by large-scale biogeographic shifts.

2.
J Hered ; 114(5): 561-569, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37262429

RESUMO

Dittrichia graveolens (L.) Greuter, or stinkwort, is a weedy annual plant within the family Asteraceae. The species is recognized for the rapid expansion of both its native and introduced ranges: in Europe, it has expanded its native distribution northward from the Mediterranean basin by nearly 7 °C latitude since the mid-20th century, while in California and Australia the plant is an invasive weed of concern. Here, we present the first de novo D. graveolens genome assembly (1N = 9 chromosomes), including complete chloroplast (151,013 bp) and partial mitochondrial genomes (22,084 bp), created using Pacific Biosciences HiFi reads and Dovetail Omni-C data. The final primary assembly is 835 Mbp in length, of which 98.1% are represented by 9 scaffolds ranging from 66 to 119 Mbp. The contig N50 is 74.9 Mbp and the scaffold N50 is 96.9 Mbp, which, together with a 98.8% completeness based on the BUSCO embryophyta10 database containing 1,614 orthologs, underscores the high quality of this assembly. This pseudo-molecule-scale genome assembly is a valuable resource for our fundamental understanding of the genomic consequences of range expansion under global change, as well as comparative genomic studies in the Asteraceae.


Assuntos
Genoma , Genômica , Cromossomos , Evolução Biológica , Filogenia
3.
Am J Bot ; 103(11): 1979-1989, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864264

RESUMO

PREMISE OF THE STUDY: Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. METHODS: We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. KEY RESULTS: Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. CONCLUSIONS: The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community.


Assuntos
Erysimum/fisiologia , Insetos/fisiologia , Polinização , Animais , Erysimum/genética , Erysimum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Depressão por Endogamia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Poliploidia , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Autofertilização , Autoincompatibilidade em Angiospermas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...