Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4300, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541097

RESUMO

Mainstay treatment for Plasmodium vivax malaria has long relied on chloroquine (CQ) against blood-stage parasites plus primaquine against dormant liver-stage forms (hypnozoites), however drug resistance confronts this regimen and threatens malaria control programs. Understanding the basis of P. vivax chloroquine resistance (CQR) will inform drug discovery and malaria control. Here we investigate the genetics of P. vivax CQR by a cross of parasites differing in drug response. Gametocytogenesis, mosquito infection, and progeny production are performed with mixed parasite populations in nonhuman primates, as methods for P. vivax cloning and in vitro cultivation remain unavailable. Linkage mapping of progeny surviving >15 mg/kg CQ identifies a 76 kb region in chromosome 1 including pvcrt, an ortholog of the Plasmodium falciparum CQR transporter gene. Transcriptional analysis supports upregulated pvcrt expression as a mechanism of CQR.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Cruzamentos Genéticos , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Culicidae/parasitologia , Descoberta de Drogas , Feminino , Expressão Gênica , Genes de Protozoários , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Masculino , Plasmodium falciparum/genética
2.
Proc Natl Acad Sci U S A ; 115(49): 12513-12518, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455312

RESUMO

Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Aotidae , Cruzamentos Genéticos , Resistência a Medicamentos , Regulação da Expressão Gênica , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Malar J ; 17(1): 60, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394891

RESUMO

BACKGROUND: Four Plasmodium falciparum genetic crosses (HB3×3D7, HB3×Dd2, 7G8×GB4, and 803×GB4) have produced sets of recombinant progeny that are widely used for malaria research, including investigations of anti-malarial drug resistance. It is critical to maintain the progeny free from cross-contamination. Microsatellite polymorphisms can be used to validate parasite identity. RESULTS: A set of 12 markers was developed that differentiates the parents of the four P. falciparum crosses. This typing set identified distinguishing patterns of inheritance (fingerprints) in segregant collections of 15 progeny clones from HB3×3D7, 32 from HB3×Dd2, 33 from 7G8×GB4, and 81 from 803×GB4. Stronger amplification was observed with shorter relative to longer alleles of individual microsatellites. In experiments with mixed parental DNAs, electropherograms showed that signals of cross-contamination can be missed when minor peaks less than 1/4 or 1/3 the height of the major peak are disregarded by threshold settings commonly used for population studies. CONCLUSIONS: Microsatellite typing is an effective method to check the identity of P. falciparum lines and detect parasite cross-contamination in cultures; however, care must be taken not to ignore minor peaks that can be overlooked. The 12 microsatellite markers presented here provide a rapid and efficient means to distinguish the segregants of laboratory crosses. Fingerprint patterns from these markers are useful to maintain the integrity of diverse parasite lines in and between research laboratories.


Assuntos
DNA de Protozoário/genética , Genótipo , Repetições de Microssatélites/genética , Plasmodium falciparum/genética , Marcadores Genéticos/genética , Técnicas de Genotipagem , Humanos , Malária Falciparum/parasitologia , Tipagem Molecular
4.
Malar J ; 15: 94, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888201

RESUMO

BACKGROUND: Artemisinin-based combination therapy is recommended to treat Plasmodium falciparum worldwide, but observations of longer artemisinin (ART) parasite clearance times (PCTs) in Southeast Asia are widely interpreted as a sign of potential ART resistance. In search of an in vitro correlate of in vivo PCT after ART treatment, a ring-stage survival assay (RSA) of 0-3 h parasites was developed and linked to polymorphisms in the Kelch propeller protein (K13). However, RSA remains a laborious process, involving heparin, Percoll gradient, and sorbitol treatments to obtain rings in the 0-3 h window. Here two alternative RSA protocols are presented and compared to the standard Percoll-based method, one highly stage-specific and one streamlined for laboratory application. METHODS: For all protocols, P. falciparum cultures were synchronized with 5 % sorbitol treatment twice over two intra-erythrocytic cycles. For a filtration-based RSA, late-stage schizonts were passed through a 1.2 µm filter to isolate merozoites, which were incubated with uninfected erythrocytes for 45 min. The erythrocytes were then washed to remove lysis products and further incubated until 3 h post-filtration. Parasites were pulsed with either 0.1 % dimethyl sulfoxide (DMSO) or 700 nM dihydroartemisinin in 0.1 % DMSO for 6 h, washed twice in drug-free media, and incubated for 66-90 h, when survival was assessed by microscopy. For a sorbitol-only RSA, synchronized young (0-3 h) rings were treated with 5 % sorbitol once more prior to the assay and adjusted to 1 % parasitaemia. The drug pulse, incubation, and survival assessment were as described above. RESULTS: Ring-stage survival of P. falciparum parasites containing either the K13 C580 or C580Y polymorphism (associated with low and high RSA survival, respectively) were assessed by the described filtration and sorbitol-only methods and produced comparable results to the reported Percoll gradient RSA. Advantages of both new methods include: fewer reagents, decreased time investment, and fewer procedural steps, with enhanced stage-specificity conferred by the filtration method. CONCLUSIONS: Assessing P. falciparum ART sensitivity in vitro via RSA can be streamlined and accurately evaluated in the laboratory by filtration or sorbitol synchronization methods, thus increasing the accessibility of the assay to research groups.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Parasitologia/métodos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Animais , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/fisiologia
5.
J Infect Dis ; 211(1): 125-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25081932

RESUMO

Plasmodium vivax is a major cause of malaria morbidity worldwide yet has remained genetically intractable. To stably modify this organism, we used zinc-finger nucleases (ZFNs), which take advantage of homology-directed DNA repair mechanisms at the site of nuclease action. Using ZFNs specific to the gene encoding P. vivax dihydrofolate reductase (pvdhfr), we transfected blood specimens from Saimiri boliviensis monkeys infected with the pyrimethamine (Pyr)-susceptible Chesson strain with a ZFN plasmid carrying a Pyr-resistant mutant pvdhfr sequence. We obtained Pyr-resistant parasites in vivo that carried mutant pvdhfr and additional silent mutations designed to confirm editing. These results herald the era of stable P. vivax genetic modifications.


Assuntos
Desoxirribonucleases/genética , Genoma de Protozoário , Plasmodium vivax/genética , Dedos de Zinco , Animais , Antimaláricos/farmacologia , Resistência a Medicamentos , Genes de Protozoários/genética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Saimiri/parasitologia , Tetra-Hidrofolato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...