Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262343

RESUMO

MOTIVATION: Recent advancements in long-read RNA sequencing have enabled the examination of full-length isoforms, previously uncaptured by short-read sequencing methods. An alternative powerful method for studying isoforms is through the use of barcoded short-read RNA reads, for which a barcode indicates whether two short-reads arise from the same molecule or not. Such techniques included the 10x Genomics linked-read based SParse Isoform Sequencing (SPIso-seq), as well as Loop-Seq, or Tell-Seq. Some applications, such as novel-isoform discovery, require very high coverage. Obtaining high coverage using long reads can be difficult, making barcoded RNA-seq data a valuable alternative for this task. However, most annotation pipelines are not able to work with a set of short reads instead of a single transcript, also not able to work with coverage gaps within a molecule if any. In order to overcome this challenge, we present an RNA-seq assembler that allows the determination of the expressed isoform per barcode. RESULTS: In this article, we present cloudrnaSPAdes, a tool for assembling full-length isoforms from barcoded RNA-seq linked-read data in a reference-free fashion. Evaluating it on simulated and real human data, we found that cloudrnaSPAdes accurately assembles isoforms, even for genes with high isoform diversity. AVAILABILITY AND IMPLEMENTATION: cloudrnaSPAdes is a feature release of a SPAdes assembler and version used for this article is available at https://github.com/1dayac/cloudrnaSPAdes-release.


Assuntos
Genômica , RNA , Humanos , RNA/genética , Análise de Sequência de RNA/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma
2.
Biology (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37626951

RESUMO

A recently published article in BMCGenomics by Fuentes-Trillo et al. contains a comparison of assembly approaches of several noroviral samples via different tools and preprocessing strategies. It turned out that the study used outdated versions of tools as well as tools that were not designed for the viral assembly task. In order to improve the suboptimal assemblies, authors suggested different sophisticated preprocessing strategies that seem to make only minor contributions to the results. We have reproduced the analysis using state-of-the-art tools designed for viral assembly, and we demonstrate that tools from the SPAdes toolkit (rnaviralSPAdes and coronaSPAdes) allow one to assemble the samples from the original study into a single contig without any additional preprocessing.

3.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546844

RESUMO

Motivation: Recent advancements in long-read RNA sequencing have enabled the examination of full-length isoforms, previously uncaptured by short-read sequencing methods. An alternative powerful method for studying isoforms is through the use of barcoded short-read RNA reads, for which a barcode indicates whether two short-reads arise from the same molecule or not. Such techniques included the 10x Genomics linked-read based SParse Isoform Sequencing (SPIso-seq), as well as Loop-Seq, or Tell-Seq. Some applications, such as novel-isoform discovery, require very high coverage. Obtaining high coverage using long reads can be difficult, making barcoded RNA-seq data a valuable alternative for this task. However, most annotation pipelines are not able to work with a set of short reads instead of a single transcript, also not able to work with coverage gaps within a molecule if any. In order to overcome this challenge, we present an RNA-seq assembler allowing the determination of the expressed isoform per barcode. Results: In this paper, we present cloudrnaSPAdes, a tool for assembling full-length isoforms from barcoded RNA-seq linked-read data in a reference-free fashion. Evaluating it on simulated and real human data, we found that cloudrnaSPAdes accurately assembles isoforms, even for genes with high isoform diversity. Availability: cloudrnaSPAdes is a feature release of a SPAdes assembler and available at https://cab.spbu.ru/software/cloudrnaspades/.

4.
Genome Biol ; 24(1): 197, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641111

RESUMO

Synthetic long read sequencing techniques such as UST's TELL-Seq and Loop Genomics' LoopSeq combine 3[Formula: see text] barcoding with standard short-read sequencing to expand the range of linkage resolution from hundreds to tens of thousands of base-pairs. However, the lack of a 1:1 correspondence between a long fragment and a 3[Formula: see text] unique molecular identifier confounds the assignment of linkage between short reads. We introduce Ariadne, a novel assembly graph-based synthetic long read deconvolution algorithm, that can be used to extract single-species read-clouds from synthetic long read datasets to improve the taxonomic classification and de novo assembly of complex populations, such as metagenomes.


Assuntos
Algoritmos , Tetranitrato de Pentaeritritol , Genômica , Metagenoma
5.
Nat Methods ; 20(4): 559-568, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959322

RESUMO

Structural variants (SVs) are a major driver of genetic diversity and disease in the human genome and their discovery is imperative to advances in precision medicine. Existing SV callers rely on hand-engineered features and heuristics to model SVs, which cannot scale to the vast diversity of SVs nor fully harness the information available in sequencing datasets. Here we propose an extensible deep-learning framework, Cue, to call and genotype SVs that can learn complex SV abstractions directly from the data. At a high level, Cue converts alignments to images that encode SV-informative signals and uses a stacked hourglass convolutional neural network to predict the type, genotype and genomic locus of the SVs captured in each image. We show that Cue outperforms the state of the art in the detection of several classes of SVs on synthetic and real short-read data and that it can be easily extended to other sequencing platforms, while achieving competitive performance.


Assuntos
Aprendizado Profundo , Software , Humanos , Genótipo , Sinais (Psicologia) , Variação Estrutural do Genoma , Genoma Humano
6.
Nucleic Acids Res ; 50(18): e108, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35924489

RESUMO

Recent pan-genome studies have revealed an abundance of DNA sequences in human genomes that are not present in the reference genome. A lion's share of these non-reference sequences (NRSs) cannot be reliably assembled or placed on the reference genome. Improvements in long-read and synthetic long-read (aka linked-read) technologies have great potential for the characterization of NRSs. While synthetic long reads require less input DNA than long-read datasets, they are algorithmically more challenging to use. Except for computationally expensive whole-genome assembly methods, there is no synthetic long-read method for NRS detection. We propose a novel integrated alignment-based and local assembly-based algorithm, Novel-X, that uses the barcode information encoded in synthetic long reads to improve the detection of such events without a whole-genome de novo assembly. Our evaluations demonstrate that Novel-X finds many non-reference sequences that cannot be found by state-of-the-art short-read methods. We applied Novel-X to a diverse set of 68 samples from the Polaris HiSeq 4000 PGx cohort. Novel-X discovered 16 691 NRS insertions of size > 300 bp (total length 18.2 Mb). Many of them are population specific or may have a functional impact.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
7.
Nat Methods ; 19(4): 429-440, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396482

RESUMO

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Assuntos
Metagenoma , Metagenômica , Archaea/genética , Metagenômica/métodos , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Software
8.
Nature ; 602(7895): 142-147, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082445

RESUMO

Public databases contain a planetary collection of nucleic acid sequences, but their systematic exploration has been inhibited by a lack of efficient methods for searching this corpus, which (at the time of writing) exceeds 20 petabases and is growing exponentially1. Here we developed a cloud computing infrastructure, Serratus, to enable ultra-high-throughput sequence alignment at the petabase scale. We searched 5.7 million biologically diverse samples (10.2 petabases) for the hallmark gene RNA-dependent RNA polymerase and identified well over 105 novel RNA viruses, thereby expanding the number of known species by roughly an order of magnitude. We characterized novel viruses related to coronaviruses, hepatitis delta virus and huge phages, respectively, and analysed their environmental reservoirs. To catalyse the ongoing revolution of viral discovery, we established a free and comprehensive database of these data and tools. Expanding the known sequence diversity of viruses can reveal the evolutionary origins of emerging pathogens and improve pathogen surveillance for the anticipation and mitigation of future pandemics.


Assuntos
Computação em Nuvem , Bases de Dados Genéticas , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Alinhamento de Sequência/métodos , Virologia/métodos , Viroma/genética , Animais , Arquivos , Bacteriófagos/enzimologia , Bacteriófagos/genética , Biodiversidade , Coronavirus/classificação , Coronavirus/enzimologia , Coronavirus/genética , Evolução Molecular , Vírus Delta da Hepatite/enzimologia , Vírus Delta da Hepatite/genética , Humanos , Modelos Moleculares , Vírus de RNA/classificação , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Software
9.
Bioinformatics ; 38(1): 1-8, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34406356

RESUMO

MOTIVATION: The COVID-19 pandemic has ignited a broad scientific interest in viral research in general and coronavirus research in particular. The identification and characterization of viral species in natural reservoirs typically involves de novo assembly. However, existing genome, metagenome and transcriptome assemblers often are not able to assemble many viruses (including coronaviruses) into a single contig. Coverage variation between datasets and within dataset, presence of close strains, splice variants and contamination set a high bar for assemblers to process viral datasets with diverse properties. RESULTS: We developed coronaSPAdes, a novel assembler for RNA viral species recovery in general and coronaviruses in particular. coronaSPAdes leverages the knowledge about viral genome structures to improve assembly extending ideas initially implemented in biosyntheticSPAdes. We have shown that coronaSPAdes outperforms existing SPAdes modes and other popular short-read metagenome and viral assemblers in the recovery of full-length RNA viral genomes. AVAILABILITY AND IMPLEMENTATION: coronaSPAdes version used in this article is a part of SPAdes 3.15 release and is freely available at http://cab.spbu.ru/software/spades. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Software , Humanos , Pandemias , Metagenoma , Genoma Viral
10.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34043940

RESUMO

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Assuntos
Farmacorresistência Bacteriana/genética , Metagenômica , Microbiota/genética , População Urbana , Biodiversidade , Bases de Dados Genéticas , Humanos
11.
Microbiome ; 9(1): 82, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795001

RESUMO

BACKGROUND: Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS: A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS: Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.


Assuntos
Metagenômica , Voo Espacial , Ambiente Controlado , Humanos , Metagenoma , Astronave
12.
J Magn Reson Imaging ; 54(2): 462-471, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33719168

RESUMO

BACKGROUND: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. PURPOSE: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. STUDY TYPE: Retrospective. POPULATION: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). FIELD STRENGTH/SEQUENCE: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. ASSESSMENT: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. STATISTICAL TESTS: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. RESULTS: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. DATA CONCLUSION: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Radiologia , Inteligência Artificial , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
13.
Nat Commun ; 12(1): 1660, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712587

RESUMO

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Assuntos
COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antivirais/farmacologia , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Interações Medicamentosas , Feminino , Perfilação da Expressão Gênica , Genoma Viral , Antígenos HLA/genética , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Cidade de Nova Iorque/epidemiologia , Técnicas de Amplificação de Ácido Nucleico , Pandemias , RNA-Seq , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
14.
bioRxiv ; 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32511352

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

15.
Curr Protoc Bioinformatics ; 70(1): e102, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559359

RESUMO

SPAdes-St. Petersburg genome Assembler-was originally developed for de novo assembly of genome sequencing data produced for cultivated microbial isolates and for single-cell genomic DNA sequencing. With time, the functionality of SPAdes was extended to enable assembly of IonTorrent data, as well as hybrid assembly from short and long reads (PacBio and Oxford Nanopore). In this article we present protocols for five different assembly pipelines that comprise the SPAdes package and that are used for assembly of metagenomes and transcriptomes as well as assembly of putative plasmids and biosynthetic gene clusters from whole-genome sequencing and metagenomic datasets. In addition, we present guidelines for understanding results with use cases for each pipeline, and several additional support protocols that help in using SPAdes properly. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Assembling isolate bacterial datasets Basic Protocol 2: Assembling metagenomic datasets Basic Protocol 3: Assembling sets of putative plasmids Basic Protocol 4: Assembling transcriptomes Basic Protocol 5: Assembling putative biosynthetic gene clusters Support Protocol 1: Installing SPAdes Support Protocol 2: Providing input via command line Support Protocol 3: Providing input data via YAML format Support Protocol 4: Restarting previous run Support Protocol 5: Determining strand-specificity of RNA-seq data.


Assuntos
Algoritmos , Análise de Sequência de DNA/métodos , Bactérias/genética , Vias Biossintéticas/genética , Bases de Dados Genéticas , Metagenoma , Família Multigênica , Plasmídeos/genética , RNA-Seq , Transcriptoma/genética
16.
Genome Res ; 29(8): 1352-1362, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160374

RESUMO

Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products. While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assemblies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered through several contigs, making it difficult to reconstruct them. The situation is even more severe in shotgun metagenomics, where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.


Assuntos
Genes Bacterianos , Metagenoma , Metagenômica/métodos , Família Multigênica , Software , Mapeamento de Sequências Contíguas , Conjuntos de Dados como Assunto , Placa Dentária/microbiologia , Gengiva/microbiologia , Humanos , Internet , Mucosa Bucal/microbiologia , Faringe/microbiologia , Biossíntese de Proteínas , Língua/microbiologia
17.
Genome Res ; 29(1): 116-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523036

RESUMO

Emerging Linked-Read technologies (aka read cloud or barcoded short-reads) have revived interest in short-read technology as a viable approach to understand large-scale structures in genomes and metagenomes. Linked-Read technologies, such as the 10x Chromium system, use a microfluidic system and a specialized set of 3' barcodes (aka UIDs) to tag short DNA reads sourced from the same long fragment of DNA; subsequently, the tagged reads are sequenced on standard short-read platforms. This approach results in interesting compromises. Each long fragment of DNA is only sparsely covered by reads, no information about the ordering of reads from the same fragment is preserved, and 3' barcodes match reads from roughly 2-20 long fragments of DNA. However, compared to long-read technologies, the cost per base to sequence is far lower, far less input DNA is required, and the per base error rate is that of Illumina short-reads. In this paper, we formally describe a particular algorithmic issue common to Linked-Read technology: the deconvolution of reads with a single 3' barcode into clusters that represent single long fragments of DNA. We introduce Minerva, a graph-based algorithm that approximately solves the barcode deconvolution problem for metagenomic data (where reference genomes may be incomplete or unavailable). Additionally, we develop two demonstrations where the deconvolution of barcoded reads improves downstream results, improving the specificity of taxonomic assignments and of k-mer-based clustering. To the best of our knowledge, we are the first to address the problem of barcode deconvolution in metagenomics.


Assuntos
Algoritmos , Metagenoma , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Software
18.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795809

RESUMO

Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the United States, United Kingdom, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes compared to environmental samples; demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations; uncover new molecules and kinds of molecular communities in the human stool metabolome; and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. IMPORTANCE We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples.

19.
Genome Res ; 27(5): 824-834, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28298430

RESUMO

While metagenomics has emerged as a technology of choice for analyzing bacterial populations, the assembly of metagenomic data remains challenging, thus stifling biological discoveries. Moreover, recent studies revealed that complex bacterial populations may be composed from dozens of related strains, thus further amplifying the challenge of metagenomic assembly. metaSPAdes addresses various challenges of metagenomic assembly by capitalizing on computational ideas that proved to be useful in assemblies of single cells and highly polymorphic diploid genomes. We benchmark metaSPAdes against other state-of-the-art metagenome assemblers and demonstrate that it results in high-quality assemblies across diverse data sets.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genômica/métodos , Metagenoma , Análise de Sequência de DNA/métodos , Software , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...