Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904731

RESUMO

The causes of ventricular fibrillation (VF) are not yet elucidated, and it has been proposed that different mechanisms might exist. Moreover, conventional analysis methods do not seem to provide time or frequency domain features that allow for recognition of different VF patterns in electrode-recorded biopotentials. The present work aims to determine whether low-dimensional latent spaces could exhibit discriminative features for different mechanisms or conditions during VF episodes. For this purpose, manifold learning using autoencoder neural networks was analyzed based on surface ECG recordings. The recordings covered the onset of the VF episode as well as the next 6 min, and comprised an experimental database based on an animal model with five situations, including control, drug intervention (amiodarone, diltiazem, and flecainide), and autonomic nervous system blockade. The results show that latent spaces from unsupervised and supervised learning schemes yielded moderate though quite noticeable separability among the different types of VF according to their type or intervention. In particular, unsupervised schemes reached a multi-class classification accuracy of 66%, while supervised schemes improved the separability of the generated latent spaces, providing a classification accuracy of up to 74%. Thus, we conclude that manifold learning schemes can provide a valuable tool for studying different types of VF while working in low-dimensional latent spaces, as the machine-learning generated features exhibit separability among different VF types. This study confirms that latent variables are better VF descriptors than conventional time or domain features, making this technique useful in current VF research on elucidation of the underlying VF mechanisms.


Assuntos
Eletrocardiografia , Fibrilação Ventricular , Animais , Eletrocardiografia/métodos , Redes Neurais de Computação
2.
Sensors (Basel) ; 19(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540042

RESUMO

During the last decades there has been a rapidly growing elderly population and the number of patients with chronic heart-related diseases has exploded. Many of them (such as those with congestive heart failure or some types of arrhythmias) require close medical supervision, thus imposing a big burden on healthcare costs in most western economies. Specifically, continuous or frequent Arterial Blood Pressure (ABP) and electrocardiogram (ECG) monitoring are important tools in the follow-up of many of these patients. In this work, we present a novel remote non-ambulatory and clinically validated heart self-monitoring system, which allows ABP and ECG monitoring to effectively identify clinically relevant arrhythmias. The system integrates digital transmission of the ECG and tensiometer measurements, within a patient-comfortable support, easy to recharge and with a multi-function software, all of them aiming to adapt for elderly people. The main novelty is that both physiological variables (ABP and ECG) are simultaneously measured in an ambulatory environment, which to our best knowledge is not readily available in the clinical market. Different processing techniques were implemented to analyze the heart rhythm, including pause detection, rhythm alterations and atrial fibrillation, hence allowing early detection of these diseases. Our results achieved clinical quality both for in-lab hardware testing and for ambulatory scenario validations. The proposed active assisted living (AAL) Sensor-based system is an end-to-end multidisciplinary system, fully connected to a platform and tested by the clinical team from beginning to end.


Assuntos
Moradias Assistidas , Coração/fisiologia , Monitorização Fisiológica/instrumentação , Telemedicina/instrumentação , Algoritmos , Eletrocardiografia , Humanos , Aplicativos Móveis , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
3.
Physiol Meas ; 39(10): 105001, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30183676

RESUMO

OBJECTIVE: Changes in ECG-derived parameters are studied in atrial fibrillation (AF) patients undergoing cryoballoon catheter ablation. APPROACH: Parameters characterizing f-wave frequency, morphology by phase dispersion, and amplitude are estimated using a model-based statistical approach. These parameters are studied before, during, and after ablation, as well as for AF type (paroxysmal/persistent). Seventy-seven (49/28 paroxysmal/persistent) AF patients undergoing de novo catheter ablation are included in the study, out of which 31 (16/15 paroxysmal/persistent) were in AF during the whole procedure. A signal quality index (SQI) is used to identify analyzable segments. MAIN RESULTS: f-wave frequency decreased significantly during ablation (p = 0.001), in particular after ablation of the inferior right pulmonary vein (p < 0.05). Frequency and phase dispersion differed significantly between paroxysmal and persistent AF (p = 0.001 and p < 0.05, respectively). SIGNIFICANCE: This study demonstrates that a decrease in f-wave frequency can be distinguished during catheter ablation. The use of an SQI ensures reliable analysis and produces results significantly different from those obtained without an SQI.


Assuntos
Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter , Eletrocardiografia , Fibrilação Atrial/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Resultado do Tratamento
4.
Sensors (Basel) ; 18(5)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723990

RESUMO

Despite the wide literature on R-wave detection algorithms for ECG Holter recordings, the long-term monitoring applications are bringing new requirements, and it is not clear that the existing methods can be straightforwardly used in those scenarios. Our aim in this work was twofold: First, we scrutinized the scope and limitations of existing methods for Holter monitoring when moving to long-term monitoring; Second, we proposed and benchmarked a beat detection method with adequate accuracy and usefulness in long-term scenarios. A longitudinal study was made with the most widely used waveform analysis algorithms, which allowed us to tune the free parameters of the required blocks, and a transversal study analyzed how these parameters change when moving to different databases. With all the above, the extension to long-term monitoring in a database of 7-day Holter monitoring was proposed and analyzed, by using an optimized simultaneous-multilead processing. We considered both own and public databases. In this new scenario, the noise-avoid mechanisms are more important due to the amount of noise that exists in these recordings, moreover, the computational efficiency is a key parameter in order to export the algorithm to the clinical practice. The method based on a Polling function outperformed the others in terms of accuracy and computational efficiency, yielding 99.48% sensitivity, 99.54% specificity, 99.69% positive predictive value, 99.46% accuracy, and 0.85% error for MIT-BIH arrhythmia database. We conclude that the method can be used in long-term Holter monitoring systems.

5.
Sensors (Basel) ; 17(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068362

RESUMO

Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.


Assuntos
Eletrocardiografia/métodos , Algoritmos , Artefatos , Eletrocardiografia/normas , Eletrocardiografia Ambulatorial , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...