Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405892

RESUMO

Autophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of a nuclear macroautophagy (nucleophagy) pathway in yeast. Nucleophagy initiates with a rapid local accumulation of the nuclear cargo adaptor Atg39 at the nuclear envelope adjacent to the nucleus-vacuole junction and is delivered to the vacuole in ~300 seconds through an autophagosome intermediate. Mechanistically, nucleophagy incorporates two consecutive and genetically defined membrane fission steps: inner nuclear membrane (INM) fission generates a lumenal vesicle in the perinuclear space followed by outer nuclear membrane (ONM) fission to liberate a double membraned vesicle to the cytosol. ONM fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein1 (Dnm1), which is recruited to sites of Atg39 accumulation at the nuclear envelope. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodeling.

2.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190532

RESUMO

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Assuntos
Autofagossomos , Gotículas Lipídicas , Autofagia , Lipídeos de Membrana
3.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076959

RESUMO

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin co-purifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.

4.
Autophagy ; 19(12): 3251-3253, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599471

RESUMO

Macroautophagy/autophagy and lipid droplet (LD) biology are intricately linked, with autophagosome-dependent degradation of LDs in response to different signals. LDs play crucial roles in forming autophagosomes possibly by providing essential lipids and serving as a supportive autophagosome assembly platform at the endoplasmic reticulum (ER)-LD interface. LDs and autophagosomes share common proteins, such as VPS13, ATG2, ZFYVE1/DFCP1, and ATG14, but their dual functions remain poorly understood. In our recent study, we found that prolonged starvation leads to ATG3 localizing to large LDs and lipidating LC3B, revealing a non-canonical autophagic role on LDs. In vitro, ATG3 associates with purified and artificial LDs, and conjugated Atg8-family proteins. In long-term starved cells, only LC3B is found on the specific large LDs, positioned near LC3B-positive membranes that undergo lysosome-mediated acidification. This implies that LD-lipidated LC3B acts as a tethering factor, connecting phagophores to LDs and promoting degradation. Our data also support the notion that certain LD surfaces may function as lipidation stations for LC3B, which may move to nearby sites of autophagosome formation. Overall, our study unveils an unknown non-canonical implication of LDs in autophagy processes.Abbreviation: ATG: autophagy-related enzyme, ATP: adenosine triphosphate, E2 enzyme: ubiquitin-conjugating enzyme, ER: endoplasmic reticulum, LD: lipid droplet, LIR motif: LC3-interacting region, MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta, PE: phosphatidylethanolamine, PLIN1: perilipin 1, PNPLA2/ATGL: patatin-like phospholipase domain containing 2, SQSTM1/p62: sequestosome 1, VSP13: vacuolar protein sorting 13, ZFYVE1/DFCP1: zinc finger, FYVE domain containing 1.


Assuntos
Autofagia , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo
5.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645754

RESUMO

ATG2 proteins facilitate bulk lipid transport between membranes. ATG2 is an essential autophagy protein, but ATG2 also localizes to lipid droplets (LDs), and genetic depletion of ATG2 increases LD numbers while impairing fatty acid transport from LDs to mitochondria. How ATG2 supports LD homeostasis and whether lipid transport regulates this homeostasis remains unknown. Here we demonstrate that ATG2 is preferentially recruited to phospholipid monolayers such as those surrounding LDs rather than to phospholipid bilayers. In vitro, ATG2 can drive phospholipid transport from artificial LDs with rates that correlate with the binding affinities, such that phospholipids are moved much more efficiently when one of the ATG2-interacting structures is an artificial LD. ATG2 is thought to exhibit 'bridge-like" lipid transport, with lipids flowing across the protein between membranes. We mutated key amino acids within the bridge to form a transport-dead ATG2 mutant (TD-ATG2A) which we show specifically blocks bridge-like, but not shuttle-like, lipid transport in vitro. TD-ATG2A still localizes to LDs, but is unable to rescue LD accumulation in ATG2 knockout cells. Thus, ATG2 has a natural affinity for, and an enhanced activity upon LD surfaces and uses bridge-like lipid transport to support LD dynamics in cells.

6.
Dev Cell ; 58(14): 1266-1281.e7, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37315562

RESUMO

Lipid droplets (LDs) store lipids that can be utilized during times of scarcity via autophagic and lysosomal pathways, but how LDs and autophagosomes interact remained unclear. Here, we discovered that the E2 autophagic enzyme, ATG3, localizes to the surface of certain ultra-large LDs in differentiated murine 3T3-L1 adipocytes or Huh7 human liver cells undergoing prolonged starvation. Subsequently, ATG3 lipidates microtubule-associated protein 1 light-chain 3B (LC3B) to these LDs. In vitro, ATG3 could bind alone to purified and artificial LDs to mediate this lipidation reaction. We observed that LC3B-lipidated LDs were consistently in close proximity to collections of LC3B-membranes and were lacking Plin1. This phenotype is distinct from macrolipophagy, but it required autophagy because it disappeared following ATG5 or Beclin1 knockout. Our data suggest that extended starvation triggers a noncanonical autophagy mechanism, similar to LC3B-associated phagocytosis, in which the surface of large LDs serves as an LC3B lipidation platform for autophagic processes.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Humanos , Camundongos , Autofagossomos/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
7.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115958

RESUMO

As the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already competent to collect proteins found on mature autophagosomes, including LC3-II. Further, we use styrene-maleic acid lipid particles to reveal the nanoscale organization of protein on LC3-II membranes; ATG9 and LC3-II are each fully integrated into expanding autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the expanding autophagosome membrane.


Assuntos
Autofagossomos , Proteínas de Membrana , Animais , Autofagossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia , Transporte Proteico , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Lipídeos , Mamíferos/metabolismo
8.
J Am Chem Soc ; 145(2): 1292-1300, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36577119

RESUMO

The DNA-origami technique has enabled the engineering of transmembrane nanopores with programmable size and functionality, showing promise in building biosensors and synthetic cells. However, it remains challenging to build large (>10 nm), functionalizable nanopores that spontaneously perforate lipid membranes. Here, we take advantage of pneumolysin (PLY), a bacterial toxin that potently forms wide ring-like channels on cell membranes, to construct hybrid DNA-protein nanopores. This PLY-DNA-origami complex, in which a DNA-origami ring corrals up to 48 copies of PLY, targets the cholesterol-rich membranes of liposomes and red blood cells, readily forming uniformly sized pores with an average inner diameter of ∼22 nm. Such hybrid nanopores facilitate the exchange of macromolecules between perforated liposomes and their environment, with the exchange rate negatively correlating with the macromolecule size (diameters of gyration: 8-22 nm). Additionally, the DNA ring can be decorated with intrinsically disordered nucleoporins to further restrict the diffusion of traversing molecules, highlighting the programmability of the hybrid nanopores. PLY-DNA pores provide an enabling biophysical tool for studying the cross-membrane translocation of ultralarge molecules and open new opportunities for analytical chemistry, synthetic biology, and nanomedicine.


Assuntos
Nanoporos , Lipossomos/metabolismo , Membrana Celular/metabolismo , Difusão , DNA/química
9.
EMBO J ; 42(2): e113046, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36478568

RESUMO

In their recent article, Polyansky et al identify phosphatidylcholine (PC) as the most abundant lipid in the autophagosome membrane and demonstrate that eliminating de novo PC synthesis sharply impairs autophagic processing. In the absence of PC synthesis, open cup-like structures accumulate, implicating PC as a key component in the closure of autophagosomes.


Assuntos
Autofagossomos , Fosfatidilcolinas , Autofagia
10.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36282247

RESUMO

Lipid transport proteins at membrane contacts, where organelles are closely apposed, are critical in redistributing lipids from the endoplasmic reticulum (ER), where they are made, to other cellular membranes. Such protein-mediated transfer is especially important for maintaining organelles disconnected from secretory pathways, like mitochondria. We identify mitoguardin-2, a mitochondrial protein at contacts with the ER and/or lipid droplets (LDs), as a lipid transporter. An x-ray structure shows that the C-terminal domain of mitoguardin-2 has a hydrophobic cavity that binds lipids. Mass spectrometry analysis reveals that both glycerophospholipids and free-fatty acids co-purify with mitoguardin-2 from cells, and that each mitoguardin-2 can accommodate up to two lipids. Mitoguardin-2 transfers glycerophospholipids between membranes in vitro, and this transport ability is required for roles both in mitochondrial and LD biology. While it is not established that protein-mediated transfer at contacts plays a role in LD metabolism, our findings raise the possibility that mitoguardin-2 functions in transporting fatty acids and glycerophospholipids at mitochondria-LD contacts.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
11.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35267021

RESUMO

At organelle-organelle contact sites, proteins have long been known to facilitate the rapid movement of lipids. Classically, this lipid transport involves the extraction of single lipids into a hydrophobic pocket on a lipid transport protein. Recently, a new class of lipid transporter has been described with physical characteristics that suggest these proteins are likely to function differently. They possess long hydrophobic tracts that can bind many lipids at once and physically span the entire gulf between membranes at contact sites, suggesting that they may act as bridges to facilitate bulk lipid flow. Here, we review what has been learned regarding the structure and function of this class of lipid transporters, whose best characterized members are VPS13 and ATG2 proteins, and their apparent coordination with other lipid-mobilizing proteins on organelle membranes. We also discuss the prevailing hypothesis in the field, that this type of lipid transport may facilitate membrane expansion through the bulk delivery of lipids, as well as other emerging hypotheses and questions surrounding these novel lipid transport proteins.


Assuntos
Membranas Mitocondriais , Biogênese de Organelas , Proteínas de Transporte/metabolismo , Lipídeos , Membranas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas/metabolismo
12.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34714326

RESUMO

Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Vesículas Citoplasmáticas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagossomos/ultraestrutura , Autofagia , Proteínas Relacionadas à Autofagia/química , Vesículas Citoplasmáticas/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Membrana Nuclear/ultraestrutura , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Fatores de Tempo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34447902

RESUMO

Recent studies have identified the metazoan ER-resident proteins, TMEM41B and VMP1, and so structurally related VTT-domain proteins, as glycerolipid scramblases.

14.
J Am Chem Soc ; 143(31): 12294-12303, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324340

RESUMO

DNA nanotechnology provides a versatile and powerful tool to dissect the structure-function relationship of biomolecular machines like the nuclear pore complex (NPC), an enormous protein assembly that controls molecular traffic between the nucleus and cytoplasm. To understand how the intrinsically disordered, Phe-Gly-rich nucleoporins (FG-nups) within the NPC establish a selective barrier to macromolecules, we built a DNA-origami NanoTrap. The NanoTrap comprises precisely arranged FG-nups in an NPC-like channel, which sits on a baseplate that captures macromolecules that pass through the FG network. Using this biomimetic construct, we determined that the FG-motif type, grafting density, and spatial arrangement are critical determinants of an effective diffusion barrier. Further, we observed that diffusion barriers formed with cohesive FG interactions dominate in mixed-FG-nup scenarios. Finally, we demonstrated that the nuclear transport receptor, Ntf2, can selectively transport model cargo through NanoTraps composed of FxFG but not GLFG Nups. Our NanoTrap thus recapitulates the NPC's fundamental biological activities, providing a valuable tool for studying nuclear transport.


Assuntos
Materiais Biomiméticos/química , DNA/química , Glicina/química , Nanotecnologia , Proteínas de Transporte Nucleocitoplasmático/química , Fenilalanina/química , Proteínas da Gravidez/química , Transporte Ativo do Núcleo Celular , Materiais Biomiméticos/metabolismo , DNA/metabolismo , Glicina/metabolismo , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fenilalanina/metabolismo , Proteínas da Gravidez/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850023

RESUMO

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogênese de Organelas , Proteínas de Transferência de Fosfolipídeos/fisiologia
16.
Nat Chem ; 13(4): 335-342, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33785892

RESUMO

In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA 'nanobricks' to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30-130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.


Assuntos
Centrifugação/métodos , DNA/química , Lipossomos/isolamento & purificação , Proteína 7 Relacionada à Autofagia/metabolismo , Colesterol/análogos & derivados , Lipossomos/metabolismo , Tamanho da Partícula , Proteínas SNARE/metabolismo
17.
J Biol Chem ; 295(39): 13584-13600, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32732290

RESUMO

During autophagy, LC3 and GABARAP proteins become covalently attached to phosphatidylethanolamine on the growing autophagosome. This attachment is also reversible. Deconjugation (or delipidation) involves the proteolytic cleavage of an isopeptide bond between LC3 or GABARAP and the phosphatidylethanolamine headgroup. This cleavage is carried about by the ATG4 family of proteases (ATG4A, B, C, and D). Many studies have established that ATG4B is the most active of these proteases and is sufficient for autophagy progression in simple cells. Here we examined the second most active protease, ATG4A, to map out key regulatory motifs on the protein and to establish its activity in cells. We utilized fully in vitro reconstitution systems in which we controlled the attachment of LC3/GABARAP members and discovered a role for a C-terminal LC3-interacting region on ATG4A in regulating its access to LC3/GABARAP. We then used a gene-edited cell line in which all four ATG4 proteases have been knocked out to establish that ATG4A is insufficient to support autophagy and is unable to support GABARAP proteins removal from the membrane. As a result, GABARAP proteins accumulate on membranes other than mature autophagosomes. These results suggest that to support efficient production and consumption of autophagosomes, additional factors are essential including possibly ATG4B itself or one of its proteolytic products in the LC3 family.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Macroautofagia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
18.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357219

RESUMO

Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery >50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent conceptual advances in the field.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Membranas/metabolismo , Autofagossomos/química , Autofagia/genética , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Humanos , Lipídeos/biossíntese , Lipídeos/química , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
J Cell Biol ; 218(6): 1787-1798, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30952800

RESUMO

During macroautophagic stress, autophagosomes can be produced continuously and in high numbers. Many different organelles have been reported as potential donor membranes for this sustained autophagosome growth, but specific machinery to support the delivery of lipid to the growing autophagosome membrane has remained unknown. Here we show that the autophagy protein, ATG2, without a clear function since its discovery over 20 yr ago, is in fact a lipid-transfer protein likely operating at the ER-autophagosome interface. ATG2A can bind tens of glycerophospholipids at once and transfers lipids robustly in vitro. An N-terminal fragment of ATG2A that supports lipid transfer in vitro is both necessary and fully sufficient to rescue blocked autophagosome biogenesis in ATG2A/ATG2B KO cells, implying that regulation of lipid homeostasis is the major autophagy-dependent activity of this protein and, by extension, that protein-mediated lipid transfer across contact sites is a principal contributor to autophagosome formation.


Assuntos
Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Lipídeos/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/genética , Transporte Biológico , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
20.
Dev Cell ; 49(2): 251-266.e8, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30880001

RESUMO

In neurons, defects in autophagosome clearance have been associated with neurodegenerative disease. Yet, the mechanisms that coordinate trafficking and clearance of synaptic autophagosomes are poorly understood. Here, we use genetic screens and in vivo imaging in single neurons of C. elegans to identify mechanisms necessary for clearance of synaptic autophagosomes. We observed that autophagy at the synapse can be modulated in vivo by the state of neuronal activity, that autophagosomes undergo UNC-16/JIP3-mediated retrograde transport, and that autophagosomes containing synaptic material mature in the cell body. Through forward genetic screens, we then determined that autophagosome maturation in the cell body depends on the protease ATG-4.2, but not the related ATG-4.1, and that ATG-4.2 can cleave LGG-1/Atg8/GABARAP from membranes. Our studies revealed that ATG-4.2 is specifically necessary for the maturation and clearance of autophagosomes and that defects in transport and ATG-4.2-mediated maturation genetically interact to enhance abnormal accumulation of autophagosomes in neurons.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína Proteases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Isoformas de Proteínas , Transdução de Sinais/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...