Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561222

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pinocitose , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
2.
Mol Pharmacol ; 101(4): 181-190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34965982

RESUMO

The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
PLoS Genet ; 17(10): e1009832, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673774

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células PC-3 , Fosforilação/fisiologia
4.
EMBO J ; 40(12): e106412, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988249

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico
5.
Genes (Basel) ; 11(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854217

RESUMO

The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Humanos , Fosforilação/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética
6.
J Biol Chem ; 295(23): 8096-8105, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312749

RESUMO

mTOR complex 1 (mTORC1) senses nutrients to mediate anabolic processes within the cell. Exactly how mTORC1 promotes cell growth remains unclear. Here, we identified a novel mTORC1-interacting protein called protein kinase A anchoring protein 8L (AKAP8L). Using biochemical assays, we found that the N-terminal region of AKAP8L binds to mTORC1 in the cytoplasm. Importantly, loss of AKAP8L decreased mTORC1-mediated processes such as translation, cell growth, and cell proliferation. AKAPs anchor protein kinase A (PKA) through PKA regulatory subunits, and we show that AKAP8L can anchor PKA through regulatory subunit Iα. Reintroducing full-length AKAP8L into cells restored mTORC1-regulated processes, whereas reintroduction of AKAP8L missing the N-terminal region that confers the interaction with mTORC1 did not. Our results suggest a multifaceted role for AKAPs in the cell. We conclude that mTORC1 appears to regulate cell growth, perhaps in part through AKAP8L.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Nucleares/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Nucleares/deficiência
7.
Biochem J ; 477(10): 1847-1863, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32347294

RESUMO

The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr kinase that comprises two complexes, termed mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 phosphorylates S6K1 at Thr 389, whereas mTORC2 phosphorylates AKT at Ser 473 to promote cell growth. As the mTOR name implies it is the target of natural product called rapamycin, a clinically approved drug used to treat human disease. Short-term rapamycin treatment inhibits the kinase activity of mTORC1 but not mTORC2. However, the ATP-competitive catalytic mTOR inhibitor Torin1 was identified to inhibit the kinase activity of both mTORC1 and mTORC2. Here, we report that H89 (N-(2-(4-bromocinnamylamino) ethyl)-5-isoquinolinesulfonamide), a well-characterized ATP-mimetic kinase inhibitor, renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors across multiple cell lines. Moreover, H89 prevented the dephosphorylation of AKT and S6K1 under nutrient depleted conditions. PKA and other known H89-targeted kinases do not alter the phosphorylation status of S6K1 and AKT. Pharmacological inhibition of some phosphatases also enhanced S6K1 and AKT phosphorylation. These findings suggest a new target for H89 by which it sustains the phosphorylation status of S6K1 and AKT, resulting in mTOR signaling.


Assuntos
Isoquinolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
J Biol Chem ; 295(10): 2890-2899, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32019866

RESUMO

Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.


Assuntos
Asparagina/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Asparagina/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Glutamina/química , Células HEK293 , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
9.
Elife ; 82019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112131

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth, metabolism, and autophagy. Extensive research has focused on pathways that activate mTORC1 like growth factors and amino acids; however, much less is known about signaling cues that directly inhibit mTORC1 activity. Here, we report that G-protein coupled receptors (GPCRs) paired to Gαs proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA) and inhibit mTORC1. Mechanistically, PKA phosphorylates the mTORC1 component Raptor on Ser 791, leading to decreased mTORC1 activity. Consistently, in cells where Raptor Ser 791 is mutated to Ala, mTORC1 activity is partially rescued even after PKA activation. Gαs-coupled GPCRs stimulation leads to inhibition of mTORC1 in multiple cell lines and mouse tissues. Our results uncover a signaling pathway that directly inhibits mTORC1, and suggest that GPCRs paired to Gαs proteins may be potential therapeutic targets for human diseases with hyperactivated mTORC1.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Fosforilação
10.
Arterioscler Thromb Vasc Biol ; 38(2): 353-362, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284606

RESUMO

OBJECTIVE: The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS: We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS: Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.


Assuntos
Permeabilidade Capilar , Embrião não Mamífero/irrigação sanguínea , Células Endoteliais/metabolismo , Fator 6 de Diferenciação de Crescimento/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 de Diferenciação de Crescimento/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
EMBO J ; 33(20): 2363-73, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25230933

RESUMO

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Diferenciação Celular , Hemangioblastos/citologia , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/genética , Receptor Notch3 , Receptores Notch/genética , Transdução de Sinais , Somitos/citologia , Somitos/embriologia , Somitos/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...