Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 10(20): 5226-5234, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191877

RESUMO

BINOL derived chiral phosphoric acids (CPAs) are widely known for their high selectivity. Numerous 3,3'-substituents are used for a variety of stereoselective reactions and theoretical models of their effects are provided. However, experimental data about the structural space of CPA complexes in solution is extremely rare and so far restricted to NMR investigations of binary TRIP/imine complexes featuring two E- and two Z-imine conformations. Therefore, in this paper the structural space of 16 CPA/imine binary complexes is screened and 8 of them are investigated in detail by NMR. For the first time dimers of CPA/imine complexes in solution were experimentally identified, which show an imine position similar to the transition state in transfer hydrogenations. Furthermore, our experimental and computational data revealed an astonishing invariance of the four core structures regardless of the different steric and electronic properties of the 3,3'-substituent. However, a significant variation of E/Z-ratios is observed, demonstrating a strong influence of the 3,3'-substituents on the stabilization of the imine in the complexes. These experimental E/Z-ratios cannot be reproduced by calculations commonly applied for mechanistic studies, despite extensive conformational scans and treatment of the electronic structure at a high level of theory with various implicit solvent corrections. Thus, these first detailed experimental data about the structural space and influence of the 3,3'-substituent on the energetics of CPA/imine complexes can serve as basis to validate and improve theoretical predictive models.

2.
Chem Sci ; 10(43): 10025-10034, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32015815

RESUMO

The concept of hydrogen bonding for enhancing substrate binding and controlling selectivity and reactivity is central in catalysis. However, the properties of these key hydrogen bonds and their catalyst-dependent variations are extremely difficult to determine directly by experiments. Here, for the first time the hydrogen bond properties of a whole series of BINOL-derived chiral phosphoric acid (CPA) catalysts in their substrate complexes with various imines were investigated to derive the influence of different 3,3'-substituents on the acidity and reactivity. NMR 1H and 15N chemical shifts and 1 J NH coupling constants of these hydrogen bonds were used to establish an internal acidity scale corroborated by calculations. Deviations from calculated external acidities reveal the importance of intermolecular interactions for this key feature of CPAs. For CPAs with similarly sized binding pockets, a correlation of reactivity and hydrogen bond strengths of the catalyst was found. A catalyst with a very small binding pocket showed significantly reduced reactivities. Therefore, NMR isomerization kinetics, population and chemical shift analyses of binary and ternary complexes as well as reaction kinetics were performed to address the steps of the transfer hydrogenation influencing the overall reaction rate. The results of CPAs with different 3,3'-substituents show a delicate balance between the isomerization and the ternary complex formation to be rate-determining. For CPAs with an identical acidic motif and similar sterics, reactivity and internal acidity correlated inversely. In cases where higher sterical demand within the binary complex hinders the binding of the second substrate, the correlation between acidity and reactivity breaks down.

3.
J Chem Inf Model ; 57(2): 223-233, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28004927

RESUMO

NF-κB is a major transcription factor whose activation is triggered through two main activation pathways: the canonical pathway involving disruption of IκB-α/NF-κB complexes and the alternative pathway whose activation relies on the inducible proteolysis of the inhibitory protein p100. One central step controlling p100 processing consists in the interaction of the E3 ubiquitin ligase ß-TrCP with p100, thereby leading to its ubiquitinylation and subsequent either complete degradation or partial proteolysis by the proteasome. However, the interaction mechanism between p100 and ß-TrCP is still poorly defined. In this work, a diphosphorylated 21-mer p100 peptide model containing the phosphodegron motif was used to characterize the interaction with ß-TrCP by NMR. In parallel, docking simulations were performed in order to obtain a model of the 21P-p100/ß-TrCP complex. Saturation transfer difference (STD) experiments were performed in order to highlight the residues of p100 involved in the interaction with the ß-TrCP protein. These results highlighted the importance of pSer865 and pSer869 residues in the interaction with ß-TrCP and particularly the Tyr867 that fits inside the hydrophobe ß-TrCP cavity with the Arg474 guanidinium group. Four other arginines, Arg285, Arg410, Arg431, and Arg521, were found essential in the stabilization of p100 on the ß-TrCP surface. Importantly, the requirement for these five arginine residues of ß-TrCP for the interaction with p100 was further confirmed in vivo, thereby validating the docking model through a biological approach.


Assuntos
Simulação de Acoplamento Molecular , Subunidade p52 de NF-kappa B/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Subunidade p52 de NF-kappa B/química , Ligação Proteica , Conformação Proteica , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/genética
4.
Biochem Pharmacol ; 99: 123-31, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612419

RESUMO

A small molecule, Natura-α, a clinical stage investigational new drug for certain inflammatory diseases, has been evaluated for drug interaction with STAT3 and inhibiting systemic lupus erythematosus (SLE). Studies have revealed that it selectively inhibits STAT3-Y705 phosphorylation and, suppresses pro-inflammatory cytokines, stimulates anti-inflammatory cytokine IL-10, thereby skewing T cell differentiation from the Th1/Th17 lineages toward the Treg lineage. The potential binding of the drug to STAT3 protein has been investigated with a computational modeling and docking simulation using X-ray crystal structure of the STAT3ß homodimer. Natura-α was shown to directly bind to SH2 domain of STAT3 and forms H-bonds with amino acids Glu594 and Arg609. The phosphorylation of Y705 was prevented and making the formation of STAT3 homodimer impossible, thereby blocking STAT3 activation. The in vivo efficacy of Natura-α in SLE was evaluated in a bioassay with NZB/W female mice. Mice at week 19 were given orally Natura-α at 25 or 75 mg/kg, once a day, 5 days per week for 29 weeks. Mice were monitored weekly until 52 weeks of age. Both dosages were effective to reduce proteinuria and significantly improved animal survival rate. The renal functions were preserved with glomerular lesions reversed, which paralleled with decreased C3 deposit. The numbers of kidney cells stained with phosphorylated STAT3-Y705 remarkably decreased, demonstrating blocking of Y-705 phosphorylation by the treatment. Since NZB/W mice develop nephritis which resembles SLE in men, the data strongly suggests that Natura-α may be a potential effective therapeutic agent for lupus.


Assuntos
Indóis/metabolismo , Nefrite Lúpica/metabolismo , Fator de Transcrição STAT3/metabolismo , Domínios de Homologia de src/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Indóis/química , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos NZB , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/química , Domínios de Homologia de src/efeitos dos fármacos
5.
J Med Chem ; 58(4): 1832-45, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25634041

RESUMO

A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/ß-pregnane-3,20-dione or 5ß-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/ß-pregnane-3,20-dione, among which the 5ß-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 µM versus 1.2 and 10.6 µM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5ß-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 µM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/metabolismo , Progesterona/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patologia , Modelos Moleculares , Conformação Molecular , Progesterona/síntese química , Progesterona/química , Células Tumorais Cultivadas
6.
J Mol Biol ; 425(13): 2330-46, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23583775

RESUMO

Monitoring enzymatic activity in vivo of individual homologous enzymes such as the matrix metalloproteinases (MMPs) by antagonist molecules is highly desired for defining physiological and pathophysiological pathways. However, the rational design of antagonists targeting enzyme catalytic moieties specific to one of the homologous enzymes often appears to be an extremely difficult task. This is mainly due to the high structural homology at the enzyme active sites shared by members of the protein family. Accordingly, controlling enzymatic activity via alternative allosteric sites has become an attractive proposition for drug design targeting individual homologous enzymes. Yet, the challenge remains to identify such regulatory alternative sites that are often hidden and scattered over different locations on the protein's surface. We have designed branched amphiphilic molecules exhibiting specific inhibitory activity towards individual members of the MMP family. These amphiphilic isomers share the same chemical nature, providing versatile nonspecific binding reactivity that allows to probe hidden regulatory residues on a given protein surface. Using the advantage provided by amphiphilic ligands, here we explore a new approach for determining hidden regulatory sites. This approach includes diverse experimental analysis, such as structural spectroscopic analyses, NMR, and protein crystallography combined with computational prediction of effector binding sites. We demonstrate how our approach works by analyzing members of the MMP family that possess a unique set of such sites. Our work provides a proof of principle for using ligand effectors to unravel hidden regulatory sites specific to members of the structurally homologous MMP family. This approach may be exploited for the design of novel molecular effectors and therapeutic agents affecting protein catalytic function via interactions with structure-specific regulatory sites.


Assuntos
Regulação Alostérica , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Tensoativos/metabolismo , Cristalografia por Raios X , Descoberta de Drogas/métodos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica
7.
J Am Chem Soc ; 134(4): 2100-10, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22239621

RESUMO

The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782-785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray "closed" conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.


Assuntos
Colágeno/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Biocatálise , Colágeno/síntese química , Colágeno/química , Metaloproteinase 1 da Matriz/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
9.
J Biol Chem ; 284(19): 12821-8, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19282283

RESUMO

The presence of extensive reciprocal conformational freedom between the catalytic and the hemopexin-like domains of full-length matrix metalloproteinase-1 (MMP-1) is demonstrated by NMR and small angle x-ray scattering experiments. This finding is discussed in relation to the essentiality of the hemopexin-like domain for the collagenolytic activity of MMP-1. The conformational freedom experienced by the present system, having the shortest linker between the two domains, when compared with similar findings on MMP-12 and MMP-9 having longer and the longest linker within the family, respectively, suggests this type of conformational freedom to be a general property of all MMPs.


Assuntos
Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Modelos Moleculares , Catálise , Cristalografia por Raios X , Heme , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 9 da Matriz/química , Ressonância Magnética Nuclear Biomolecular , Maleabilidade , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Am Chem Soc ; 130(22): 7011-21, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18465858

RESUMO

The proteolytic activity of matrix metalloproteinases toward extracellular matrix components (ECM), cytokines, chemokines, and membrane receptors is crucial for several homeostatic and pathological processes. Active MMPs are a family of single-chain enzymes (23 family members in the human genome), most of which constituted by a catalytic domain and by a hemopexin-like domain connected by a linker. The X-ray structures of MMP-1 and MMP-2 suggest a conserved and well-defined spatial relationship between the two domains. Here we present structural data for MMP-12, suitably stabilized against self-hydrolysis, both in solution (NMR and SAXS) and in the solid state (X-ray), showing that the hemopexin-like and the catalytic domains experience conformational freedom with respect to each other on a time scale shorter than 10(-8) s. Hints on the probable conformations are also obtained. This experimental finding opens new perspectives for the often hypothesized active role of the hemopexin-like domain in the enzymatic activity of MMPs.


Assuntos
Hemopexina/química , Metaloproteinase 12 da Matriz/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...