Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 970: 176505, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503400

RESUMO

Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide. α-Syn accumulated in transfected DH60.21 neuroblastoma cells and α-Syn aggregation was inhibited by LETC with an EC50 of 0.066 ± 0.047 µM. Full-length human α-Syn overexpressing Line 62 (L62) mice accumulated neuronal α-Syn that was associated with a decreased motor performance in the open field and automated home cage. LETC, administered orally for 6 weeks at 10 mg/kg significantly decreased α-Syn-positive neurons in multiple brain regions and this resulted in a rescue of movement deficits in the open field in these mice. LETC however, did not improve activity deficits of L62 mice in the home cage environment. The results suggest that LETC may provide a potential disease modification therapy in synucleinopathies through the inhibition of α-Syn aggregation.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Humanos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sinucleinopatias/patologia , Doença de Parkinson/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo
2.
Biomedicines ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453617

RESUMO

The tau protein aggregation inhibitor hydromethylthionine mesylate (HMTM) was shown recently to have concentration-dependent pharmacological activity in delaying cognitive decline and brain atrophy in phase 3 Alzheimer's disease (AD) clinical trials; the activity was reduced in patients receiving symptomatic therapies. The methylthionine (MT) moiety has been reported to increase the clearance of pathological tau and to enhance mitochondrial activity, which is impaired in AD patients. In line 1 (L1) mice (a model of AD), HMTM (5/15 mg/kg) was administered either as a monotherapy or as an add-on to a chronic administration with the cholinesterase inhibitor rivastigmine (0.1/0.5 mg/kg) to explore mitochondrial function and energy substrate utilization as potential targets of drug interference. Compared with wild-type NMRI mice, the L1 mice accumulated greater levels of l-lactate and of the LDH-A subunit responsible for the conversion of pyruvate into l-lactate. In contrast, the levels of LDH-B and mitochondrial ETC subunits and the activity of complexes I and IV was not altered in the L1 mice. The activity of complex I and complex IV tended to increase with the HMTM dosing, in turn decreasing l-lactate accumulation in the brains of the L1 mice, despite increasing the levels of LDH-A. The chronic pre-dosing of the L1 mice with rivastigmine partially prevented the enhancement of the activity of complexes I and IV by HMTM and the increase in the levels of LDH-A while further reducing the levels of l-lactate. Thus, HMTM in combination with rivastigmine leads to a depletion in the energy substrate l-lactate, despite bioenergetic production not being favoured. In this study, the changes in l-lactate appear to be regulated by LDH-A, since neither of the experimental conditions affected the levels of LDH-B. The data show that HMTM monotherapy facilitates the use of substrates for energy production, particularly l-lactate, which is provided by astrocytes, additionally demonstrating that a chronic pre-treatment with rivastigmine prevented most of the HMTM-associated effects.

3.
Cells ; 10(8)2021 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440931

RESUMO

Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies. Several of these behavioural phenotypes and tau pathology are reversed by treatment with hydromethylthionine but key pathways underlying these corrections remain elusive. In two proteomic experiments, line 66 mice were compared with wild-type mice and then vehicle and hydromethylthionine treatments of line 66 mice were compared. The brain proteome was investigated using two-dimensional electrophoresis and mass spectrometry to identify protein networks and pathways that were altered due to tau overexpression or modified by hydromethylthionine treatment. Overexpression of mutant tau induced metabolic/mitochondrial dysfunction, changes in synaptic transmission and in stress responses, and these functions were recovered by hydromethylthionine. Other pathways, such as NRF2, oxidative phosphorylation and protein ubiquitination were activated by hydromethylthionine, presumably independent of its function as a tau aggregation inhibitor. Our results suggest that hydromethylthionine recovers cellular activity in both a tau-dependent and a tau-independent fashion that could lead to a wide-spread improvement of homeostatic function in the FTD brain.


Assuntos
Demência Frontotemporal/metabolismo , Azul de Metileno/análogos & derivados , Proteômica/métodos , Proteínas tau/metabolismo , Animais , Feminino , Imuno-Histoquímica , Azul de Metileno/metabolismo , Camundongos , Camundongos Transgênicos , Espectrometria de Massas em Tandem
4.
J Biol Chem ; 295(52): 18508-18523, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127647

RESUMO

Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.


Assuntos
Modelos Animais de Doenças , Demência Frontotemporal/patologia , Mutação , Frações Subcelulares/metabolismo , Proteínas tau/metabolismo , Animais , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/genética
5.
Curr Alzheimer Res ; 17(3): 285-296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091331

RESUMO

BACKGROUND: Symptomatic treatments of Alzheimer's Disease (AD) with cholinesterase inhibitors and/or memantine are relatively ineffective and there is a need for new treatments targeting the underlying pathology of AD. In most of the failed disease-modifying trials, patients have been allowed to continue taking symptomatic treatments at stable doses, under the assumption that they do not impair efficacy. In recently completed Phase 3 trials testing the tau aggregation inhibitor leuco-methylthioninium bis (hydromethanesulfonate) (LMTM), we found significant differences in treatment response according to whether patients were taking LMTM either as monotherapy or as an add-on to symptomatic treatments. METHODS: We have examined the effect of either LMTM alone or chronic rivastigmine prior to LMTM treatment of tau transgenic mice expressing the short tau fragment that constitutes the tangle filaments of AD. We have measured acetylcholine levels, synaptosomal glutamate release, synaptic proteins, mitochondrial complex IV activity, tau pathology and Choline Acetyltransferase (ChAT) immunoreactivity. RESULTS: LMTM given alone increased hippocampal Acetylcholine (ACh) levels, glutamate release from synaptosomal preparations, synaptophysin levels in multiple brain regions and mitochondrial complex IV activity, reduced tau pathology, partially restored ChAT immunoreactivity in the basal forebrain and reversed deficits in spatial learning. Chronic pretreatment with rivastigmine was found to reduce or eliminate almost all these effects, apart from a reduction in tau aggregation pathology. LMTM effects on hippocampal ACh and synaptophysin levels were also reduced in wild-type mice. CONCLUSION: The interference with the pharmacological activity of LMTM by a cholinesterase inhibitor can be reproduced in a tau transgenic mouse model and, to a lesser extent, in wild-type mice. Long-term pretreatment with a symptomatic drug alters a broad range of brain responses to LMTM across different transmitter systems and cellular compartments at multiple levels of brain function. There is, therefore, no single locus for the negative interaction. Rather, the chronic neuronal activation induced by reducing cholinesterase function produces compensatory homeostatic downregulation in multiple neuronal systems. This reduces a broad range of treatment responses to LMTM associated with a reduction in tau aggregation pathology. Since the interference is dictated by homeostatic responses to prior symptomatic treatment, it is likely that there would be similar interference with other drugs tested as add-on to the existing symptomatic treatment, regardless of the intended therapeutic target or mode of action. The present findings outline key results that now provide a working model to explain interference by symptomatic treatment.


Assuntos
Doença de Alzheimer , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Azul de Metileno/análogos & derivados , Rivastigmina/farmacologia , Animais , Modelos Animais de Doenças , Interações Medicamentosas , Azul de Metileno/farmacologia , Camundongos , Camundongos Transgênicos , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos
6.
Behav Brain Res ; 339: 153-168, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29180135

RESUMO

Alpha-Synuclein (α-Syn) accumulation is considered a major risk factor for the development of synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. We have generated mice overexpressing full-length human α-Syn fused to a membrane-targeting signal sequence under the control of the mouse Thy1-promotor. Three separate lines (L56, L58 and L62) with similar gene expression levels, but considerably heightened protein accumulation in L58 and L62, were established. In L62, there was widespread labelling of α-Syn immunoreactivity in brain including spinal cord, basal forebrain, cortex and striatum. Interestingly, there was no detectable α-Syn expression in dopaminergic neurones of the substantia nigra, but strong human α-Syn reactivity in glutamatergic synapses. The human α-Syn accumulated during aging and formed PK-resistant, thioflavin-binding aggregates. Mice displayed early onset bradykinesia and age progressive motor deficits. Functional alterations within the striatum were confirmed: L62 showed normal basal dopamine levels, but impaired dopamine release (upon amphetamine challenge) in the dorsal striatum measured by in vivo brain dialysis at 9 months of age. This impairment was coincident with a reduced response to amphetamine in the activity test. L62 further displayed greater sensitivity to low doses of the dopamine receptor 1 (D1) agonist SKF81297 but reacted normally to the D2 agonist quinpirole in the open field. Since accumulation of α-Syn aggregates in neurones and synapses and alterations in the dopaminergic tone are characteristics of PD, phenotypes reported for L62 present a good opportunity to further our understanding of motor dysfunction in PD and Lewy body dementia.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Doença de Parkinson/genética , Fenótipo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
7.
Front Mol Neurosci ; 10: 447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375308

RESUMO

α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). We have tested whether N,N,N',N'-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 µM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62) transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK)-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation.

8.
Behav Pharmacol ; 26(4): 353-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25769090

RESUMO

Given the repeated failure of amyloid-based approaches in Alzheimer's disease, there is increasing interest in tau-based therapeutics. Although methylthioninium (MT) treatment was found to be beneficial in tau transgenic models, the brain concentrations required to inhibit tau aggregation in vivo are unknown. The comparative efficacy of methylthioninium chloride (MTC) and leucomethylthioninium salts (LMTX; 5-75 mg/kg; oral administration for 3-8 weeks) was assessed in two novel transgenic tau mouse lines. Behavioural (spatial water maze, RotaRod motor performance) and histopathological (tau load per brain region) proxies were applied. Both MTC and LMTX dose-dependently rescued the learning impairment and restored behavioural flexibility in a spatial problem-solving water maze task in Line 1 (minimum effective dose: 35 mg MT/kg for MTC, 9 mg MT/kg for LMTX) and corrected motor learning in Line 66 (effective doses: 4 mg MT/kg). Simultaneously, both drugs reduced the number of tau-reactive neurons, particularly in the hippocampus and entorhinal cortex in Line 1 and in a more widespread manner in Line 66. MT levels in the brain followed a sigmoidal concentration-response relationship over a 10-fold range (0.13-1.38 µmol/l). These data establish that diaminophenothiazine compounds, like MT, can reverse both spatial and motor learning deficits and reduce the underlying tau pathology, and therefore offer the potential for treatment of tauopathies.


Assuntos
Azul de Metileno/farmacologia , Fármacos Neuroprotetores/farmacologia , Tauopatias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Estudos de Coortes , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/patologia , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Azul de Metileno/química , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Oxirredução , Resolução de Problemas/efeitos dos fármacos , Distribuição Aleatória , Tauopatias/patologia , Tauopatias/fisiopatologia
9.
J Pharmacol Exp Ther ; 352(1): 110-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320049

RESUMO

Methylthioninium (MT) is a tau aggregation inhibitor with therapeutic potential in Alzheimer's disease (AD). MT exists in equilibrium between reduced [leucomethylthioninium (LMT)] and oxidized (MT(+)) forms; as a chloride salt [methylthioninium chloride (MTC), "methylene blue"], it is stabilized in its MT(+) form. Although the results of a phase 2 study of MTC in 321 mild/moderate AD subjects identified a 138-mg MT/day dose as the minimum effective dose on cognitive and imaging end points, further clinical development of MT was delayed pending resolution of the unexpected lack of efficacy of the 228-mg MT/day dose. We hypothesized that the failure of dose response may depend on differences known at the time in dissolution in simulated gastric and intestinal fluids of the 100-mg MTC capsules used to deliver the 228-mg dose and reflect previously unsuspected differences in redox processing of MT at different levels in the gut. The synthesis of a novel chemical entity, LMTX (providing LMT in a stable anhydrous crystalline form), has enabled a systematic comparison of the pharmacokinetic properties of MTC and LMTX in preclinical and clinical studies. The quantity of MT released in water or gastric fluid within 60 minutes proved in retrospect to be an important determinant of clinical efficacy. A further factor was a dose-dependent limitation in the ability to absorb MT in the presence of food when delivered in the MT(+) form as MTC. A model is presented to account for the complexity of MT absorption, which may have relevance for other similar redox molecules.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Azul de Metileno/metabolismo , Azul de Metileno/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Proteínas tau/química , Absorção Fisico-Química , Administração Oral , Adolescente , Adulto , Animais , Transporte Biológico , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Eritrócitos/metabolismo , Feminino , Humanos , Masculino , Azul de Metileno/administração & dosagem , Azul de Metileno/uso terapêutico , Camundongos , Oxirredução , Adulto Jovem
10.
PLoS One ; 6(11): e27068, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096518

RESUMO

Late-stage neuropathological hallmarks of Alzheimer's disease (AD) are ß-amyloid (ßA) and hyperphosphorylated tau peptides, aggregated into plaques and tangles, respectively. Corresponding phenotypes have been mimicked in existing transgenic mice, however, the translational value of aggressive over-expression has recently been questioned. As controlled gene expression may offer animal models with better predictive validity, we set out to design a transgenic mouse model that circumvents complications arising from pronuclear injection and massive over-expression, by targeted insertion of human mutated amyloid and tau transgenes, under the forebrain- and neurone-specific CaMKIIα promoter, termed PLB1(Double). Crossing with an existing presenilin 1 line resulted in PLB1(Triple) mice. PLB1(Triple) mice presented with stable gene expression and age-related pathology of intra-neuronal amyloid and hyperphosphorylated tau in hippocampus and cortex from 6 months onwards. At this early stage, pre-clinical (18)FDG PET/CT imaging revealed cortical hypometabolism with increased metabolic activity in basal forebrain and ventral midbrain. Quantitative EEG analyses yielded heightened delta power during wakefulness and REM sleep, and time in wakefulness was already reliably enhanced at 6 months of age. These anomalies were paralleled by impairments in long-term and short-term hippocampal plasticity and preceded cognitive deficits in recognition memory, spatial learning, and sleep fragmentation all emerging at ∼12 months. These data suggest that prodromal AD phenotypes can be successfully modelled in transgenic mice devoid of fibrillary plaque or tangle development. PLB1(Triple) mice progress from a mild (MCI-like) state to a more comprehensive AD-relevant phenotype, which are accessible using translational tools such as wireless EEG and microPET/CT.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Sono/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Sono/genética , Proteínas tau/genética
11.
Brain Res Rev ; 53(1): 1-16, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16839608

RESUMO

Detoxification from drug abuse is strongly threatened by the occurrence of renewed episodes of drug intake. In human addicts, relapse to drug seeking may take place even after a considerably long period from the last drug consumption. Over the last decade, the endocannabinoid system has received remarkable attention due to its unique features, including its rewarding properties closely resembling those of the most commonly abused substances and its multiple therapeutic implications. Although limited at present, evidence is now emerging on a possible participation of the endogenous cannabinoid system in the regulation of relapsing phenomena. Both stimulation and blockade of the central cannabinoid CB-sub1 receptor have proved to play an important role in drug- as well as in cue-induced reinstatement of drug seeking behavior. Indeed, while CB-sub1 receptor stimulation may elicit relapse not only to cannabinoid seeking but also to cocaine, heroin, alcohol and methamphetamine, this effect is significantly attenuated, when not fully prevented, by pretreatment with the CB-sub1 receptor antagonist rimonabant. However, corroborating data on the involvement of the cannabinoid system in stress-induced reinstatement are still rather scarce. The present review attempts to collect data obtained from different laboratories using diverse experimental approaches, to provide a comprehensive picture of the recent evidence of a relationship between the cannabinoid system and the neurobiological mechanisms leading to relapse. For each class of abused drugs, the conspicuous progress made in delineating the role of the endocannabinoid system in relapse to drug seeking has been examined by placing particular emphasis on the findings obtained from behavioral studies. After summarizing findings and implications emerging from the reviewed studies, we conclude by briefly discussing what information is still missing and how missing information might be obtained.


Assuntos
Encéfalo/fisiopatologia , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Síndrome de Abstinência a Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/genética , Modelos Animais de Doenças , Humanos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Recompensa , Rimonabanto , Prevenção Secundária , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/prevenção & controle , Transtornos Relacionados ao Uso de Substâncias/metabolismo
12.
Neuroreport ; 17(15): 1629-32, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17001282

RESUMO

In the present study, dopamine release was monitored during cannabinoid self-administration in rats to achieve a detailed understanding of the way in which dopamine mediates the reinforcing effects of cannabinoids. Extracellular dopamine levels were measured in the shell of the nucleus accumbens of either Lister Hooded or Long Evans rats trained to self-administer the cannabinoid CB1 receptor agonist WIN 55,212-2. A significant relationship between extracellular dopamine levels and bar-pressing rates was observed in both strains, as the dopamine content appreciably increased in respect to basal values during cannabinoid intake. Importantly, dopamine was not modified when trained rats were shifted to vehicle self-administration suggesting that an enhanced activity of the mesolimbic dopamine pathway underlies cannabinoid-taking behaviour.


Assuntos
Canabinoides/administração & dosagem , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Analgésicos/administração & dosagem , Análise de Variância , Animais , Comportamento Animal , Benzoxazinas , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Microdiálise , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Núcleo Accumbens/metabolismo , Ratos , Ratos Long-Evans , Autoadministração/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...