Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143258

RESUMO

Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discover that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Interestingly, different from the role reported in a previous study based on C2C12 myoblasts, multiple lines of both in vitro and in vivo evidence reveal that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 are not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discover that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.

2.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38187693

RESUMO

Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discovered that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Unexpectedly, multiple lines of both in vitro and in vivo evidence revealed that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 were not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discovered that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA