Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 653: 455-464, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30412890

RESUMO

High latitudes are considered particularly vulnerable to ocean acidification, since they are naturally low in carbonate ions. The edible mussel Mytilus chilensis is a common calcifier inhabiting marine ecosystems of the southern Chile, where culturing of this species is concentrated and where algal blooms produced by the toxic dinoflagellate A. catenella are becoming more frequent. Juvenile Mytilus chilensis were exposed to experimental conditions simulating two environmental phenomena: pCO2 increase and the presence of paralytic shellfish toxins (PST) produced by the dinoflagellate Alexandrium catenella. Individuals were exposed to two levels of pCO2: 380 µatm (control condition) and 1000 µatm (future conditions) over a period of 39 days (acclimation), followed by another period of 40 days exposure to a combination of pCO2 and PST. Both factors significantly affected most of the physiological variables measured (feeding, metabolism and scope for growth). However, these effects greatly varied over time, which can be explained by the high individual variability described for mussels exposed to different environmental conditions. Absorption efficiency was not affected by the independent effect of the toxic diet; however, the diet and pCO2 interaction affected it significantly. The inhibition of the physiological processes related with energy acquisition by diets containing PST, may negatively impact mussel fitness, which could have important consequences for both wild and cultured mussel populations, and thus, for socioeconomic development in southern Chile.


Assuntos
Dióxido de Carbono/efeitos adversos , Mudança Climática , Toxinas Marinhas/efeitos adversos , Mytilus/fisiologia , Água do Mar/química , Animais , Dinoflagellida/química , Metabolismo Energético , Aptidão Genética , Concentração de Íons de Hidrogênio , Mytilus/genética , Mytilus/crescimento & desenvolvimento
2.
PLoS One ; 13(2): e0193370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474467

RESUMO

This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity.


Assuntos
Bivalves/fisiologia , Dinoflagellida , Mytilus/fisiologia , Animais , Chile , Dieta , Ingestão de Alimentos/fisiologia , Endoscopia , Comportamento Alimentar , Proliferação Nociva de Algas , Toxinas Marinhas , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...