Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
PLoS One ; 18(12): e0295851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153936

RESUMO

Multiocular defect has been described in different canine breeds, including the Old English Sheepdog. Affected dogs typically present with multiple and various ocular abnormalities. We carried out whole genome sequencing on an Old English Sheepdog that had been diagnosed with hereditary cataracts at the age of five and then referred to a board-certified veterinary ophthalmologist due to owner-reported visual deterioration. An ophthalmic assessment revealed that there was bilateral vitreal degeneration, macrophthalmos, and spherophakia in addition to cataracts. Follow-up consultations revealed cataract progression, retinal detachment, uveitis and secondary glaucoma. Whole genome sequence filtered variants private to the case, shared with another Old English Sheepdog genome and predicted to be deleterious were genotyped in an initial cohort of six Old English Sheepdogs (three affected by multiocular defect and three control dogs without evidence of inherited eye disease). Only one of the twenty-two variants segregated correctly with multiocular defect. The variant is a single nucleotide substitution, located in the collagen-type gene COL11A1, c.1775T>C, that causes an amino acid change, p.Phe1592Ser. Genotyping of an additional 14 Old English Sheepdogs affected by multiocular defect revealed a dominant mode of inheritance with four cases heterozygous for the variant. Further genotyping of hereditary cataract-affected Old English Sheepdogs revealed segregation of the variant in eight out of nine dogs. In humans, variants in the COL11A1 gene are associated with Stickler syndrome type II, also dominantly inherited.


Assuntos
Catarata , Doenças do Tecido Conjuntivo , Descolamento Retiniano , Humanos , Cães , Animais , Mutação , Descolamento Retiniano/genética , Descolamento Retiniano/veterinária , Descolamento Retiniano/complicações , Doenças do Tecido Conjuntivo/diagnóstico , Catarata/genética , Catarata/veterinária , Catarata/complicações , Colágeno Tipo XI/genética , Linhagem
2.
Mov Disord ; 38(6): 1094-1099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023257

RESUMO

BACKGROUND: Some paroxysmal movement disorders remain without an identified genetic cause. OBJECTIVES: The aim was to identify the causal genetic variant for a paroxysmal dystonia-ataxia syndrome in Weimaraner dogs. METHODS: Clinical and diagnostic investigations were performed. Whole genome sequencing of one affected dog was used to identify private homozygous variants against 921 control genomes. RESULTS: Four Weimaraners were presented for episodes of abnormal gait. Results of examinations and diagnostic investigations were unremarkable. Whole genome sequencing revealed a private frameshift variant in the TNR (tenascin-R) gene in an affected dog, XM_038542431.1:c.831dupC, which is predicted to truncate more than 75% of the open read frame. Genotypes in a cohort of 4 affected and 70 unaffected Weimaraners showed perfect association with the disease phenotype. CONCLUSIONS: We report the association of a TNR variant with a paroxysmal dystonia-ataxia syndrome in Weimaraners. It might be relevant to include sequencing of this gene in diagnosing humans with unexplained paroxysmal movement disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Distonia , Distúrbios Distônicos , Humanos , Cães , Animais , Distonia/genética , Distonia/veterinária , Distúrbios Distônicos/genética , Genótipo , Fenótipo , Ataxia
3.
4.
Vet Ophthalmol ; 25(1): 85-89, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34870369

RESUMO

OBJECTIVE: To establish the allele frequency of the PLL-causing G>A intron 10 ADAMTS17 mutation in the Portuguese Podengo population in the UK and investigate a possible correlation between the mutation and short stature. METHODS: Two groups of dogs (Group 1 and Group 2) were recruited for the purpose of the study. Group 1 (n = 40) consisted of dogs which were genotyped only and Group 2 (n = 42) consisted of dogs which were genotyped, underwent a full ophthalmological examination and also had their height measured at the withers. RESULTS: In Group 1, genotyping for the ADAMTS17:c.1473+1G>A mutation confirmed 1/40 homozygous for the mutated allele (-/-), 7/40 heterozygous for the mutated allele (+/-), and 32/40 homozygous for the wild-type allele (+/+) dogs. In Group 2, genotyping of the dogs confirmed 6/42 heterozygous for the mutated allele (+/-) and homozygous for the wild-type allele (+/+) dogs. In total, 1/82 (1.2%) dogs were confirmed to be homozygous for the mutated allele, 13/82 (15.8%) heterozygous for the mutated allele and 68/82 (83%) homozygous for the wild-type allele. The frequency of the mutated allele across both groups was calculated as 0.09. A statistically significant correlation between the mutation and short stature could not be established (p = .590). CONCLUSIONS: The frequency of the mutation calculated in this study (0.09) is high. Genetic testing should be considered for each dog prior to breeding with a view of selective breeding.


Assuntos
Doenças do Cão , Animais , Doenças do Cão/genética , Cães , Frequência do Gene , Íntrons , Mutação , Portugal
5.
Genes (Basel) ; 12(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34828377

RESUMO

Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.


Assuntos
Doenças do Cão/genética , Mutação de Sentido Incorreto , Proteínas/genética , Degeneração Retiniana/veterinária , Animais , Cães , Feminino , Hibridização Genética , Masculino , Fenótipo , Degeneração Retiniana/genética , Sequenciamento Completo do Genoma , Lobos
6.
J Vet Intern Med ; 35(5): 2306-2314, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34387380

RESUMO

BACKGROUND: Hereditary sensory and autonomic neuropathies (HSANs) are a group of genetic disorders affecting the peripheral nervous system. Two different associated variants have been identified in dogs: 1 in Border Collies and 1 in Spaniels and Pointers. OBJECTIVES: Clinically and genetically characterize HSAN in a family of mixed breed dogs. ANIMALS: Five 7-month-old mixed breed dogs from 2 related litters were presented for evaluation of a 2-month history of acral mutilation and progressive pelvic limb gait abnormalities. METHODS: Complete physical, neurological, electrodiagnostic, and histopathological evaluations were performed. Whole genome sequencing of 2 affected dogs (1 from each litter) was used to identify variants that were homozygous or heterozygous in both cases, but wild type in 217 control genomes of 100 breeds. Immunohistochemistry was used to assess protein expression. RESULTS: Complete physical, neurological, electrodiagnostic, and histopathological evaluations confirmed a disorder affecting sensory and autonomic nerves. Whole genome sequencing identified a missense variant in the RETREG1 (reticulophagy regulator 1) gene (c.656C > T, p.P219L). All affected dogs were homozygous for the variant, which was not detected in 1193 dogs from different breeds. Immunohistochemistry showed no expression of RETREG1 in the cerebellum of affected dogs. One of the affected dogs lived for 5 years and showed gradual progression of the clinical signs. CONCLUSIONS AND CLINICAL IMPORTANCE: We confirmed the diagnosis of HSAN in a family of mixed breed dogs and identified a novel and possibly pathogenic RETREG1 variant. Affected dogs experienced gradual deterioration over several years.


Assuntos
Doenças do Cão , Neuropatias Hereditárias Sensoriais e Autônomas , Animais , Doenças do Cão/genética , Cães , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/veterinária , Heterozigoto , Homozigoto , Mutação de Sentido Incorreto , Sequenciamento Completo do Genoma/veterinária
7.
Anim Genet ; 52(5): 703-713, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34252218

RESUMO

Genotype imputation using a reference panel that combines high-density array data and publicly available whole genome sequence consortium variant data is potentially a cost-effective method to increase the density of extant lower-density array datasets. In this study, three datasets (two Border Collie; one Italian Spinone) generated using a legacy array (Illumina CanineHD, 173 662 SNPs) were utilised to assess the feasibility and accuracy of this approach and to gather additional evidence for the efficacy of canine genotype imputation. The cosmopolitan reference panels used to impute genotypes comprised dogs of 158 breeds, mixed breed dogs, wolves and Chinese indigenous dogs, as well as breed-specific individuals genotyped using the Axiom Canine HD array. The two Border Collie reference panels comprised 808 individuals including 79 Border Collies and 426 326 or 426 332 SNPs; and the Italian Spinone reference panel comprised 807 individuals including 38 Italian Spinoni and 476 313 SNPs. A high accuracy for imputation was observed, with the lowest accuracy observed for one of the Border Collie datasets (mean R2  = 0.94) and the highest for the Italian Spinone dataset (mean R2  = 0.97). This study's findings demonstrate that imputation of a legacy array study set using a reference panel comprising both breed-specific array data and multi-breed variant data derived from whole genomes is effective and accurate. The process of canine genotype imputation, using the valuable growing resource of publicly available canine genome variant datasets alongside breed-specific data, is described in detail to facilitate and encourage use of this technique in canine genetics.


Assuntos
Cães/genética , Estudos de Associação Genética/veterinária , Genômica/métodos , Genótipo , Animais , Cruzamento , Polimorfismo de Nucleotídeo Único
8.
PLoS One ; 16(5): e0251071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945575

RESUMO

PURPOSE: Three related male English Cocker Spaniels (ECS) were reported to be congenitally blind. Examination of one of these revealed complete retinal detachment. A presumptive diagnosis of retinal dysplasia (RD) was provided and pedigree analysis was suggestive of an X-linked mode of inheritance. We sought to investigate the genetic basis of RD in this family of ECS. METHODS: Following whole genome sequencing (WGS) of the one remaining male RD-affected ECS, two distinct investigative approaches were employed: a candidate gene approach and a whole genome approach. In the candidate gene approach, COL9A2, COL9A3, NHEJ1, RS1 and NDP genes were investigated based on their known associations with RD and retinal detachment in dogs and humans. In the whole genome approach, affected WGS was compared with 814 unaffected canids to identify candidate variants, which were filtered based on appropriate segregation and predicted pathogenic effects followed by subsequent investigation of gene function. Candidate variants were tested for appropriate segregation in the ECS family and association with disease was assessed using samples from a total of 180 ECS. RESULTS: The same variant in NDP (c.653_654insC, p.Met114Hisfs*16) that was predicted to result in 15 aberrant amino acids before a premature stop in norrin protein, was identified independently by both approaches and was shown to segregate appropriately within the ECS family. Association of this variant with X-linked RD was significant (P = 0.0056). CONCLUSIONS: For the first time, we report a variant associated with canine X-linked RD. NDP variants are already known to cause X-linked RD, along with other abnormalities, in human Norrie disease. Thus, the dog may serve as a useful large animal model for research.


Assuntos
Doenças do Cão/genética , Proteínas do Olho/genética , Genes Ligados ao Cromossomo X/genética , Proteínas do Tecido Nervoso/genética , Displasia Retiniana/genética , Animais , Cegueira/congênito , Cegueira/genética , Cães , Doenças Genéticas Ligadas ao Cromossomo X/genética , Masculino , Doenças do Sistema Nervoso/genética , Linhagem , Fenótipo , Degeneração Retiniana/genética , Descolamento Retiniano/genética
9.
Genes (Basel) ; 11(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962042

RESUMO

In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet-Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet-Biedl syndrome with heterogeneous clinical signs.


Assuntos
Síndrome de Bardet-Biedl/etiologia , Proteínas do Citoesqueleto/genética , Deleção de Genes , Degeneração Retiniana/etiologia , Animais , Síndrome de Bardet-Biedl/patologia , Cães , Feminino , Masculino , Degeneração Retiniana/patologia
10.
BMC Genet ; 21(1): 100, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894063

RESUMO

BACKGROUND: Canine progressive retinal atrophies are a group of hereditary retinal degenerations in dogs characterised by depletion of photoreceptor cells in the retina, which ultimately leads to blindness. PRA in the Lhasa Apso (LA) dog has not previously been clinically characterised or described in the literature, but owners in the UK are advised to have their dog examined through the British Veterinary Association/ Kennel Club/ International Sheep Dog Society (BVA/KC/ISDS) eye scheme annually, and similar schemes that are in operation in other countries. After the exclusion of 25 previously reported canine retinal mutations in LA PRA-affected dogs, we sought to identify the genetic cause of PRA in this breed. RESULTS: Analysis of whole-exome sequencing data of three PRA-affected LA and three LA without signs of PRA did not identify any exonic or splice site variants, suggesting the causal variant was non-exonic. We subsequently undertook a genome-wide association study (GWAS), which identified a 1.3 Mb disease-associated region on canine chromosome 33, followed by whole-genome sequencing analysis that revealed a long interspersed element-1 (LINE-1) insertion upstream of the IMPG2 gene. IMPG2 has previously been implicated in human retinal disease; however, until now no canine PRAs have been associated with this gene. The identification of this PRA-associated variant has enabled the development of a DNA test for this form of PRA in the breed, here termed PRA4 to distinguish it from other forms of PRA described in other breeds. This test has been used to determine the genotypes of over 900 LA dogs. A large cohort of genotyped dogs was used to estimate the allele frequency as between 0.07-0.1 in the UK LA population. CONCLUSIONS: Through the use of GWAS and subsequent sequencing of a PRA case, we have identified a LINE-1 insertion in the retinal candidate gene IMPG2 that is associated with a form of PRA in the LA dog. Validation of this variant in 447 dogs of 123 breeds determined it was private to LA dogs. We envisage that, over time, the developed DNA test will offer breeders the opportunity to avoid producing dogs affected with this form of PRA.


Assuntos
Doenças do Cão/genética , Elementos Nucleotídeos Longos e Dispersos , Regiões Promotoras Genéticas , Proteoglicanas/genética , Degeneração Retiniana/veterinária , Animais , Atrofia/genética , Atrofia/veterinária , Cruzamento , Cães/genética , Frequência do Gene , Estudos de Associação Genética/veterinária , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mutagênese Insercional , Retina/patologia , Degeneração Retiniana/genética , Sequenciamento do Exoma/veterinária
11.
PLoS One ; 15(5): e0232900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413090

RESUMO

Congenital deafness in the domestic dog is usually related to the presence of white pigmentation, which is controlled primarily by the piebald locus on chromosome 20 and also by merle on chromosome 10. Pigment-associated deafness is also seen in other species, including cats, mice, sheep, alpacas, horses, cows, pigs, and humans, but the genetic factors determining why some piebald or merle dogs develop deafness while others do not have yet to be determined. Here we perform a genome-wide association study (GWAS) to identify regions of the canine genome significantly associated with deafness in three dog breeds carrying piebald: Dalmatian, Australian cattle dog, and English setter. We include bilaterally deaf, unilaterally deaf, and matched control dogs from the same litter, phenotyped using the brainstem auditory evoked response (BAER) hearing test. Principal component analysis showed that we have different distributions of cases and controls in genetically distinct Dalmatian populations, therefore GWAS was performed separately for North American and UK samples. We identified one genome-wide significant association and 14 suggestive (chromosome-wide) associations using the GWAS design of bilaterally deaf vs. control Australian cattle dogs. However, these associations were not located on the same chromosome as the piebald locus, indicating the complexity of the genetics underlying this disease in the domestic dog. Because of this apparent complex genetic architecture, larger sample sizes may be needed to detect the genetic loci modulating risk in piebald dogs.


Assuntos
Surdez/veterinária , Doenças do Cão/genética , Animais , Estudos de Casos e Controles , Surdez/congênito , Surdez/genética , Cães , Potenciais Evocados Auditivos , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Testes Auditivos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Pigmentação da Pele/genética
12.
PLoS Genet ; 16(1): e1008527, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999692

RESUMO

A form of hereditary cerebellar ataxia has recently been described in the Norwegian Buhund dog breed. This study aimed to identify the genetic cause of the disease. Whole-genome sequencing of two Norwegian Buhund siblings diagnosed with progressive cerebellar ataxia was carried out, and sequences compared with 405 whole genome sequences of dogs of other breeds to filter benign common variants. Nine variants predicted to be deleterious segregated among the genomes in concordance with an autosomal recessive mode of inheritance, only one of which segregated within the breed when genotyped in additional Norwegian Buhunds. In total this variant was assessed in 802 whole genome sequences, and genotyped in an additional 505 unaffected dogs (including 146 Buhunds), and only four affected Norwegian Buhunds were homozygous for the variant. The variant identified, a T to C single nucleotide polymorphism (SNP) (NC_006585.3:g.88890674T>C), is predicted to cause a tryptophan to arginine substitution in a highly conserved region of the potassium voltage-gated channel interacting protein KCNIP4. This gene has not been implicated previously in hereditary ataxia in any species. Evaluation of KCNIP4 protein expression through western blot and immunohistochemical analysis using cerebellum tissue of affected and control dogs demonstrated that the mutation causes a dramatic reduction of KCNIP4 protein expression. The expression of alternative KCNIP4 transcripts within the canine cerebellum, and regional differences in KCNIP4 protein expression, were characterised through RT-PCR and immunohistochemistry respectively. The voltage-gated potassium channel protein KCND3 has previously been implicated in spinocerebellar ataxia, and our findings suggest that the Kv4 channel complex KCNIP accessory subunits also have an essential role in voltage-gated potassium channel function in the cerebellum and should be investigated as potential candidate genes for cerebellar ataxia in future studies in other species.


Assuntos
Ataxia Cerebelar/genética , Doenças do Cão/genética , Proteínas Interatuantes com Canais de Kv/genética , Polimorfismo de Nucleotídeo Único , Animais , Ataxia Cerebelar/veterinária , Cerebelo/metabolismo , Cães , Proteínas Interatuantes com Canais de Kv/metabolismo , Mutação , Sequenciamento Completo do Genoma/veterinária
13.
Vet Ophthalmol ; 23(1): 25-36, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31141290

RESUMO

PURPOSE: Canine primary closed-angle glaucoma (PCAG) is a complex disease caused by multiple genetic factors. A c.590G>A variant in OLFML3 was recently reported to be a candidate for pectinate ligament abnormality (PLA) and PCAG in the Border Collie. We investigated the association of this variant with PLA and PCAG in Border Collies from the United Kingdom. METHODS: The OLFML3 variant was genotyped in 106 Border Collies comprising 90 with normal eyes (controls) and 16 with PLA (n = 11) and/or PCAG (n = 5) (cases). Genotyping was performed in an additional 103 Border Collies to estimate variant frequency within the population. To investigate the association of the variant with disease in other breeds, genotyping was performed in 337 non-Border Collies with PLA and/or PCAG. RESULTS: Of the 90 controls, 71 were homozygous for the wild-type allele, two were homozygous for the variant, and 17 were heterozygous. Of the 16 cases, three were homozygous for the wild-type allele, 11 were homozygous for the variant, and two were heterozygous. The association of the variant allele with disease was significant (P = 1.1 x 10-9 ). We estimated the frequency of this variant to be 4.4% within the United Kingdom Border Collie population, and it was not identified in clinically affected dogs of any other breed. CONCLUSIONS: This study confirms the association of the OLFML3 variant with PLA and PCAG in Border Collies from the United Kingdom. DNA testing for the variant and selective breeding can reasonably be expected to result in a reduction of PLA and PCAG prevalence in the breed.


Assuntos
Doenças do Cão/genética , Predisposição Genética para Doença , Glaucoma de Ângulo Fechado/veterinária , Glicoproteínas/metabolismo , Ligamentos/anormalidades , Animais , DNA/genética , Doenças do Cão/epidemiologia , Cães , Feminino , Variação Genética , Genótipo , Glaucoma de Ângulo Fechado/epidemiologia , Glaucoma de Ângulo Fechado/genética , Glicoproteínas/genética , Masculino , Reino Unido/epidemiologia
14.
PLoS Genet ; 15(9): e1008378, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479451

RESUMO

Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases.


Assuntos
Transtornos da Motilidade Ciliar/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Animais , Cruzamento , Cílios/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Cães/genética , Feminino , Mutação da Fase de Leitura/genética , Ligação Genética/genética , Testes Genéticos , Genótipo , Humanos , Masculino , Mutação/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fenótipo , Sequenciamento Completo do Genoma
16.
PLoS One ; 14(8): e0220761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415586

RESUMO

Seven Northern Inuit Dogs (NID) were diagnosed by pedigree analysis with an autosomal recessive inherited oculoskeletal dysplasia (OSD). Short-limbed dwarfism, angular limb deformities and a variable combination of macroglobus, cataracts, lens coloboma, microphakia and vitreopathy were present in all seven dogs, while retinal detachment was diagnosed in five dogs. Autosomal recessive OSD caused by COL9A3 and COL9A2 mutations have previously been identified in the Labrador Retriever (dwarfism with retinal dysplasia 1-drd1) and Samoyed dog (dwarfism with retinal dysplasia 2-drd2) respectively; both of those mutations were excluded in all affected NID. Nine candidate genes were screened in whole genome sequence data; only one variant was identified that was homozygous in two affected NID but absent in controls. This variant was a nonsense single nucleotide polymorphism in COL9A3 predicted to result in a premature termination codon and a truncated protein product. This variant was genotyped in a total of 1,232 dogs. All seven affected NID were homozygous for the variant allele (T/T), while 31/116 OSD-unaffected NID were heterozygous for the variant (C/T) and 85/116 were homozygous for the wildtype allele (C/C); indicating a significant association with OSD (p = 1.41x10-11). A subset of 56 NID unrelated at the parent level were analysed to determine an allele frequency of 0.08, estimating carrier and affected rates to be 15% and 0.6% respectively in NID. All 1,109 non-NID were C/C, suggesting the variant is rare or absent in other breeds. Expression of retinal mRNA was similar between an OSD-affected NID and OSD-unaffected non-NID. In conclusion, a nonsense variant in COL9A3 is strongly associated with OSD in NID, and appears to be widespread in this breed.


Assuntos
Colágeno Tipo IX/genética , Doenças do Cão/genética , Nanismo/veterinária , Mutação , Descolamento Retiniano/veterinária , Animais , Cães , Nanismo/genética , Genótipo , Linhagem , Polimorfismo de Nucleotídeo Único , Descolamento Retiniano/genética
17.
Genes (Basel) ; 10(6)2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181696

RESUMO

Two FGF4 retrogenes on chromosomes 12 (12-FGF4RG) and 18 (18-FGF4RG) contribute to short-limbed phenotypes in dogs. 12-FGF4RG has also been associated with intervertebral disc disease (IVDD). Both of these retrogenes were found to be widespread among dog breeds with allele frequencies ranging from 0.02 to 1; however, their additive contribution to disease is unknown. Surgical cases of IVDD (n = 569) were evaluated for age of onset, disc calcification, and genotypes for the FGF4 retrogenes. Multivariable linear regression analysis identified the presence of one or two copies of 12-FGF4RG associated with significantly younger age at first surgery in a dominant manner. 18-FGF4RG had only a minor effect in dogs with one copy. Multivariable logistic regression showed that 12-FGF4RG had an additive effect on radiographic disc calcification, while 18-FGF4RG had no effect. Multivariable logistic regression using mixed breed cases and controls identified only 12-FGF4RG as highly associated with disc herniation in a dominant manner (Odds Ratio, OR, 18.42, 95% Confidence Interval (CI) 7.44 to 50.26; P < 0.001). The relative risk for disc surgery associated with 12-FGF4RG varied from 5.5 to 15.1 within segregating breeds and mixed breeds. The FGF4 retrogene on CFA12 acts in a dominant manner to decrease the age of onset and increase the overall risk of disc disease in dogs. Other modifiers of risk may be present within certain breeds, including the FGF4 retrogene on CFA18.


Assuntos
Doenças do Cão/genética , Fator 4 de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença , Degeneração do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/genética , Animais , Cruzamento , Doenças do Cão/fisiopatologia , Cães , Frequência do Gene , Genótipo , Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/fisiopatologia , Deslocamento do Disco Intervertebral/fisiopatologia , Fenótipo
18.
Artigo em Inglês | MEDLINE | ID: mdl-31131111

RESUMO

BACKGROUND: In humans, ADAMTS17 mutations are known to cause Weill-Marchesani-like syndrome, which is characterised by lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Breed-specific homozygous mutations in ADAMTS17 are associated with primary open angle glaucoma (POAG) in several dog breeds, including the Petit Basset Griffon Vendeen (PBGV) and Shar Pei (SP). We hypothesised that these mutations are associated with short stature in these breeds. METHODS: Two hundred thirty-three PBGV and 66 SP were genotyped for their breed-specific ADAMTS17 mutations. The height of each dog was measured at the withers. We used linear (per allele) regression to assess the association between ADAMTS17 mutations and height as a continuous variable, and linear regression and likelihood ratio tests to assess the shape of the association by comparing a general model with a linear (per allele) model. RESULTS: The adjusted mean heights of affected, carrier, and clear PBGV were 33.49 cm (n = 21, 95% CI 32.78-34.19 cm), 34.88 cm (n = 85, 95% CI 34.53-35.25 cm), and 34.92 cm (n = 121, 95% CI 34.62-35.21 cm), respectively. The mean heights of affected, carrier, and clear SP were 43.96 cm (n = 9, 95% CI 41.88-46.03 cm), 47.56 cm (n = 28, 95% CI 45.50-48.63 cm), and 48.95 cm (n = 23, 95% CI 47.80-50.11 cm), respectively. There was a significant difference between the height of affected and clear animals in the PBGV (P = 0.001) and the SP (P = < 0.0001). CONCLUSIONS: ADAMTS17 POAG mutations are significantly associated with height in these breeds.

19.
Genes (Basel) ; 10(5)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117272

RESUMO

Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.


Assuntos
Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Doenças do Cão/genética , Retina/patologia , Degeneração Retiniana/genética , Animais , Atrofia/genética , Atrofia/patologia , Cruzamento , Doenças do Cão/patologia , Cães , Endocitose/genética , Mutação da Fase de Leitura , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Degeneração Retiniana/patologia , Sinapses/genética , Sinapses/patologia , Sequenciamento Completo do Genoma
20.
PLoS Genet ; 15(3): e1007873, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30889179

RESUMO

Autosomal recessive retinal degenerative diseases cause visual impairment and blindness in both humans and dogs. Currently, no standard treatment is available, but pioneering gene therapy-based canine models have been instrumental for clinical trials in humans. To study a novel form of retinal degeneration in Labrador retriever dogs with clinical signs indicating cone and rod degeneration, we used whole-genome sequencing of an affected sib-pair and their unaffected parents. A frameshift insertion in the ATP binding cassette subfamily A member 4 (ABCA4) gene (c.4176insC), leading to a premature stop codon in exon 28 (p.F1393Lfs*1395), was identified. In contrast to unaffected dogs, no full-length ABCA4 protein was detected in the retina of an affected dog. The ABCA4 gene encodes a membrane transporter protein localized in the outer segments of rod and cone photoreceptors. In humans, the ABCA4 gene is associated with Stargardt disease (STGD), an autosomal recessive retinal degeneration leading to central visual impairment. A hallmark of STGD is the accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE). The discovery of a canine homozygous ABCA4 loss-of-function mutation may advance the development of dog as a large animal model for human STGD.


Assuntos
Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/genética , Doenças do Cão/genética , Degeneração Macular/congênito , Mutação , Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/química , Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Códon sem Sentido , Modelos Animais de Doenças , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Cães , Feminino , Genes Recessivos , Homozigoto , Humanos , Lipofuscina/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/veterinária , Masculino , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Insercional , Linhagem , Conformação Proteica , Retina/metabolismo , Retina/patologia , Doença de Stargardt , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...