Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 110(1): 130-145, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31573394

RESUMO

Epidemics of tomato yellow leaf curl virus (TYLCV; species Tomato yellow leaf curl begomovirus) have been problematic to tomato production in the southeastern United States since the first detection of the virus in Florida in the late 1990s. Current strategies for management focus on farm-centric tactics that have had limited success for controlling either TYLCV or its whitefly vector. Areawide pest management (AWPM)-loosely defined as a coordinated effort to implement management strategies on a regional scale-may be a viable management alternative. A prerequisite for development of an AWPM program is an understanding of the spatial and temporal dynamics of the target pathogen and pest populations. The objective of this study was to characterize populations of whitefly and TYLCV in commercial tomato production fields in southwestern Florida and utilize this information to develop predictors of whitefly density and TYLCV disease incidence as a function of environmental and geographical factors. Scouting reports were submitted by cooperating growers located across approximately 20,000 acres in southwestern Florida from 2006 to 2012. Daily weather data were obtained from several local weather stations. Moran's I was used to assess spatial relationships and polynomial distributed lag regression was used to determine the relationship between weather variables, whitefly, and TYLCV. Analyses showed that the incidence of TYLCV increased proportionally with mean whitefly density as the season progressed. Nearest-neighbor analyses showed a strong linear relationship between the logarithms of whitefly densities in neighboring fields. A similar relationship was found with TYLCV incidences. Correlograms based on Moran's I showed that these relationships extended beyond neighboring fields and out to approximately 2.5 km for TYLCV and up to 5 km for whitefly, and that values of I were generally higher during the latter half of the production season for TYLCV. Weather was better at predicting whitefly density than at predicting TYLCV incidence. Whitefly density was best predicted by the number of days with an average temperature between 16 and 24°C (T16to24), relative humidity (RH) over the previous 31 days, and vapor pressure deficit over the last 8 days. TYLCV incidence was best predicted by T16to24, RH, and maximum wind speed over the previous 31 days. Results of this study helped to identify the extent to which populations of whitefly and TYLCV exist over the agricultural landscape of southwestern Florida, and the environmental conditions that favor epidemic growth. This information was used to propose an approach to AWPM for timing control measures for managing TYLCV epidemics.


Assuntos
Begomovirus , Hemípteros , Doenças das Plantas , Solanum lycopersicum , Animais , Begomovirus/fisiologia , Florida , Hemípteros/virologia , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Densidade Demográfica , Sudeste dos Estados Unidos , Fatores de Tempo
2.
Plant Dis ; 103(7): 1642-1650, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31082305

RESUMO

Multispectral imaging is increasingly used in specialty crops, but its benefits in assessment of disease severity and improvements in conventional scouting practice are unknown. Multispectral imaging was conducted using an unmanned aerial vehicle (UAV), and data were analyzed for five flights from Florida and Georgia commercial watermelon fields in 2017. The fields were rated for disease incidence and severity by extension agents and plant pathologists at randomized locations (i.e., conventional scouting) followed by ratings at locations that were identified by differences in normalized difference vegetation index (NDVI) and stress index (i.e., UAV-assisted scouting). Diseases identified by the scouts included gummy stem blight, anthracnose, Fusarium wilt, Phytophthora fruit rot, Alternaria leaf spot, and cucurbit leaf crumple disease. Disease incidence and severity ratings were significantly different between conventional and UAV-assisted scouting (P < 0.01, Bhapkar/exact test). Higher severity ratings of 4 and 5 on a scale of 1 to 5 from no disease to complete loss of the canopy were more consistent after the scouts used the multispectral images in determining sampling locations. The UAV-assisted scouting locations had significantly lower green, red, and red edge NDVI values and higher stress index values than the conventional scouting areas (P < 0.05, ANOVA/Tukey), and this corresponded to areas with higher disease severity. Conventional scouting involving human evaluation remains necessary for disease validation. Multispectral imagery improved watermelon field scouting owing to increased ability to identify disease foci and areas of concern more rapidly than conventional scouting practices with early detection of diseases 20% more often using UAV-assisted scouting.


Assuntos
Agricultura , Citrullus , Produtos Agrícolas , Tecnologia de Sensoriamento Remoto , Agricultura/instrumentação , Agricultura/métodos , Citrullus/microbiologia , Produtos Agrícolas/microbiologia , Florida , Georgia , Processamento de Imagem Assistida por Computador
3.
Plant Dis ; 100(6): 1046-1053, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682282

RESUMO

Genomic and biological characterization of Tomato necrotic streak virus (TomNSV), a recently described ilarvirus infecting tomato in Florida, was completed. The full genome sequence revealed that TomNSV is a novel subgroup 2 ilarvirus that is distinct from other previously reported tomato-infecting ilarviruses: Tobacco streak virus, Parietaria mottle virus, and Tomato necrotic spot virus included in subgroup 1. In a host range experiment, TomNSV infected members of the Solanaceae and Chenopodiaceae plant families but did not infect sunflower (Helianthus annuus L.) or green bean (Phaseolus vulgaris L.). In tomato plants, the virus moved downward to the roots from the initial point of infection and then upward from the roots to tissues of active growth such as fruit, flowers, and young leaves where symptoms were produced. Thus, young leaves, fruit, and flowers are ideal for sampling for TomNSV. The transmission rate by seed collected from infected tomato plants was determined to be 0.33%. Collectively, the results of these experiments indicated that TomNSV is the causal agent of the necrotic streak disease of tomato observed in Florida since 2013.

4.
Phytopathology ; 105(3): 388-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25317844

RESUMO

Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV) are two emerging tospoviruses in Florida. In a survey of the southeastern United States, GRSV and TCSV were frequently detected in solanaceous crops and weeds with tospovirus-like symptoms in south Florida, and occurred sympatrically with Tomato spotted wilt virus (TSWV) in tomato and pepper in south Florida. TSWV was the only tospovirus detected in other survey locations, with the exceptions of GRSV from tomato (Solanum lycopersicum) in South Carolina and New York, both of which are first reports. Impatiens (Impatiens walleriana) and lettuce (Lactuca sativa) were the only non-solanaceous GRSV and/or TCSV hosts identified in experimental host range studies. Little genetic diversity was observed in GRSV and TCSV sequences, likely due to the recent introductions of both viruses. All GRSV isolates characterized were reassortants with the TCSV M RNA. In laboratory transmission studies, Frankliniella schultzei was a more efficient vector of GRSV than F. occidentalis. TCSV was acquired more efficiently than GRSV by F. occidentalis but upon acquisition, transmission frequencies were similar. Further spread of GRSV and TCSV in the United States is possible and detection of mixed infections highlights the opportunity for additional reassortment of tospovirus genomic RNAs.


Assuntos
Doenças das Plantas/virologia , Tospovirus/isolamento & purificação , Verduras/virologia , Animais , Florida , Tisanópteros/virologia , Tospovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...