Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neuron ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38723637

RESUMO

This NeuroView assesses the interplay among exposome, One Health, and brain capital in health and disease. Physical and social exposomes affect brain health, and green brain skills are required for environmental health strategies. Ibanez et al. address current gaps and strategies needed in research, policy, and technology, offering a road map for stakeholders.

2.
Neurosci Biobehav Rev ; 161: 105670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615851

RESUMO

Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.


Assuntos
Estado de Consciência , Estado de Consciência/fisiologia , Humanos , Teoria da Informação , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Teoria Psicológica
3.
Front Neurosci ; 17: 1180066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781257

RESUMO

Introduction: Extracting regularities from ongoing stimulus streams to form predictions is crucial for adaptive behavior. Such regularities exist in terms of the content of the stimuli and their timing, both of which are known to interactively modulate sensory processing. In real-world stimulus streams such as music, regularities can occur at multiple levels, both in terms of contents (e.g., predictions relating to individual notes vs. their more complex groups) and timing (e.g., pertaining to timing between intervals vs. the overall beat of a musical phrase). However, it is unknown whether the brain integrates predictions in a manner that is mutually congruent (e.g., if "beat" timing predictions selectively interact with "what" predictions falling on pulses which define the beat), and whether integrating predictions in different timing conditions relies on dissociable neural correlates. Methods: To address these questions, our study manipulated "what" and "when" predictions at different levels - (local) interval-defining and (global) beat-defining - within the same stimulus stream, while neural activity was recorded using electroencephalogram (EEG) in participants (N = 20) performing a repetition detection task. Results: Our results reveal that temporal predictions based on beat or interval timing modulated mismatch responses to violations of "what" predictions happening at the predicted time points, and that these modulations were shared between types of temporal predictions in terms of the spatiotemporal distribution of EEG signals. Effective connectivity analysis using dynamic causal modeling showed that the integration of "what" and "when" predictions selectively increased connectivity at relatively late cortical processing stages, between the superior temporal gyrus and the fronto-parietal network. Discussion: Taken together, these results suggest that the brain integrates different predictions with a high degree of mutual congruence, but in a shared and distributed cortical network. This finding contrasts with recent studies indicating separable mechanisms for beat-based and memory-based predictive processing.

4.
J Vis ; 23(8): 4, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531102

RESUMO

According to a Bayesian framework, visual perception requires active interpretation of noisy sensory signals in light of prior information. One such mechanism, serial dependence, is thought to promote perceptual stability by assimilating current percepts with recent stimulus history. Combining a delayed orientation-adjustment paradigm with predictable (study 1) or unpredictable (study 2) task structure, we test two key predictions of this account in a novel context: first, that serial dependence should persist even in variable environments, and, second, that, within a given observer and context, this behavioral bias should be stable from one occasion to the next. Relying on data of 41 human volunteers and two separate experimental sessions, we confirm both hypotheses. Group-level, attractive serial dependence remained strong even in the face of volatile settings with multiple, unpredictable types of tasks, and, despite considerable interindividual variability, within-subject patterns of attractive and repulsive stimulus-history biases were highly stable from one experimental session to the next. In line with the hypothesized functional role of serial dependence, we propose that, together with previous work, our findings suggest the existence of a more general individual-specific fingerprint with which the past shapes current perception. Congruent with the Bayesian account, interindividual differences may then result from differential weighting of sensory evidence and prior information.


Assuntos
Percepção Visual , Humanos , Teorema de Bayes , Viés
5.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425747

RESUMO

Effective communication hinges on a mutual understanding of word meaning in different contexts. The embedding space learned by large language models can serve as an explicit model of the shared, context-rich meaning space humans use to communicate their thoughts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We demonstrate that the linguistic embedding space can capture the linguistic content of word-by-word neural alignment between speaker and listener. Linguistic content emerged in the speaker's brain before word articulation, and the same linguistic content rapidly reemerged in the listener's brain after word articulation. These findings establish a computational framework to study how human brains transmit their thoughts to one another in real-world contexts.

6.
PLoS One ; 18(2): e0268577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763595

RESUMO

The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories' proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.


Assuntos
Estado de Consciência , Teoria da Informação , Humanos , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Percepção Visual , Eletroencefalografia
7.
Dev Sci ; 26(2): e13300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35772033

RESUMO

Since speech is a continuous stream with no systematic boundaries between words, how do pre-verbal infants manage to discover words? A proposed solution is that they might use the transitional probability between adjacent syllables, which drops at word boundaries. Here, we tested the limits of this mechanism by increasing the size of the word-unit to four syllables, and its automaticity by testing asleep neonates. Using markers of statistical learning in neonates' EEG, compared to adult behavioral performances in the same task, we confirmed that statistical learning is automatic enough to be efficient even in sleeping neonates. We also revealed that: (1) Successfully tracking transition probabilities (TP) in a sequence is not sufficient to segment it. (2) Prosodic cues, as subtle as subliminal pauses, enable to recover words segmenting capacities. (3) Adults' and neonates' capacities to segment streams seem remarkably similar despite the difference of maturation and expertise. Finally, we observed that learning increased the overall similarity of neural responses across infants during exposure to the stream, providing a novel neural marker to monitor learning. Thus, from birth, infants are equipped with adult-like tools, allowing them to extract small coherent word-like units from auditory streams, based on the combination of statistical analyses and auditory parsing cues. RESEARCH HIGHLIGHTS: Successfully tracking transitional probabilities in a sequence is not always sufficient to segment it. Word segmentation solely based on transitional probability is limited to bi- or tri-syllabic elements. Prosodic cues, as subtle as subliminal pauses, enable to recover chunking capacities in sleeping neonates and awake adults for quadriplets.


Assuntos
Percepção da Fala , Lactente , Recém-Nascido , Humanos , Adulto , Percepção da Fala/fisiologia , Aprendizagem , Memória , Sinais (Psicologia) , Fala/fisiologia , Probabilidade
8.
Cereb Cortex ; 33(6): 2507-2516, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35670595

RESUMO

When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.


Assuntos
Aprendizagem , Estado Vegetativo Persistente , Humanos , Aprendizagem/fisiologia , Eletroencefalografia/métodos , Idioma , Percepção Auditiva
9.
PLoS Comput Biol ; 18(8): e1010401, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939509

RESUMO

In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as "engaging in dialogue" and "using electronics". Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity's covariance structure. Both the rapid and slow changes in high gamma band activity separate unstructured behavioral states. We also use Gaussian process factor analysis (GPFA) to show the existence of salient spatiotemporal features with variable smoothness in time. Further, we demonstrate that both temporally smooth and stochastic spatiotemporal activity can be used to differentiate unstructured behavioral states. This is the first attempt to elucidate how different neural signal features contain information about behavioral states collected outside the conventional experimental paradigm.


Assuntos
Eletrocorticografia , Eletroencefalografia , Mapeamento Encefálico , Humanos , Distribuição Normal
10.
Neuroimage ; 260: 119438, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792291

RESUMO

Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.


Assuntos
Eletrocorticografia , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletrodos , Eletroencefalografia/métodos , Humanos
11.
Curr Biol ; 32(11): 2548-2555.e5, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487221

RESUMO

Recent studies have shown that stimulus history can be decoded via the use of broadband sensory impulses to reactivate mnemonic representations.1-4. However, memories of previous stimuli can also be used to form sensory predictions about upcoming stimuli.5,6 Predictive mechanisms allow the brain to create a probable model of the outside world, which can be updated when errors are detected between the model predictions and external inputs. 7-10 Direct recordings in the auditory cortex of awake mice established neural mechanisms for how encoding mechanisms might handle working memory and predictive processes without "overwriting" recent sensory events in instances where predictive mechanisms are triggered by oddballs within a sequence.11 However, it remains unclear whether mnemonic and predictive information can be decoded from cortical activity simultaneously during passive, implicit sequence processing, even in anesthetized models. Here, we recorded neural activity elicited by repeated stimulus sequences using electrocorticography (ECoG) in the auditory cortex of anesthetized rats, where events within the sequence (referred to henceforth as "vowels," for simplicity) were occasionally replaced with a broadband noise burst or omitted entirely. We show that both stimulus history and predicted stimuli can be decoded from neural responses to broadband impulses, at overlapping latencies but based on independent and uncorrelated data features. We also demonstrate that predictive representations are dynamically updated over the course of stimulation.


Assuntos
Córtex Auditivo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Eletrocorticografia , Memória de Curto Prazo/fisiologia , Camundongos , Ratos
12.
Nat Neurosci ; 25(3): 369-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260860

RESUMO

Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.


Assuntos
Idioma , Linguística , Encéfalo/fisiologia , Humanos
13.
Nat Hum Behav ; 6(4): 593-604, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35190711

RESUMO

Understanding how consciousness arises from neural activity remains one of the biggest challenges for neuroscience. Numerous theories have been proposed in recent years, each gaining independent empirical support. Currently, there is no comprehensive, quantitative and theory-neutral overview of the field that enables an evaluation of how theoretical frameworks interact with empirical research. We provide a bird's eye view of studies that interpreted their findings in light of at least one of four leading neuroscientific theories of consciousness (N = 412 experiments), asking how methodological choices of the researchers might affect the final conclusions. We found that supporting a specific theory can be predicted solely from methodological choices, irrespective of findings. Furthermore, most studies interpret their findings post hoc, rather than a priori testing critical predictions of the theories. Our results highlight challenges for the field and provide researchers with an open-access website ( https://ContrastDB.tau.ac.il ) to further analyse trends in the neuroscience of consciousness.


Assuntos
Estado de Consciência , Neurociências , Pesquisa Empírica , Humanos
14.
Nat Commun ; 13(1): 622, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110527

RESUMO

In memory, our continuous experiences are broken up into discrete events. Boundaries between events are known to influence the temporal organization of memory. However, how and through which mechanism event boundaries shape temporal order memory (TOM) remains unknown. Across four experiments, we show that event boundaries exert a dual role: improving TOM for items within an event and impairing TOM for items across events. Decreasing event length in a list enhances TOM, but only for items at earlier local event positions, an effect we term the local primacy effect. A computational model, in which items are associated to a temporal context signal that drifts over time but resets at boundaries captures all behavioural results. Our findings provide a unified algorithmic mechanism for understanding how and why event boundaries affect TOM, reconciling a long-standing paradox of why both contextual similarity and dissimilarity promote TOM.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Adolescente , Adulto , Algoritmos , Comportamento/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Modelos Biológicos , Adulto Jovem
15.
Neuroimage ; 247: 118746, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34875382

RESUMO

The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.


Assuntos
Ondas Encefálicas/fisiologia , Estimulação Luminosa/métodos , Adulto , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Discriminação Psicológica/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Tempo de Reação , Percepção Visual/fisiologia
16.
Front Psychiatry ; 12: 790372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938216

RESUMO

Recently, Vesuna et al. proposed a novel circuit mechanism underlying dissociative states using optogenetics and pharmacology in mice in combination with intracranial recordings and electrical stimulation in an epilepsy patient. Specifically, the authors identified a posteromedial cortical delta-rhythm that underlies states of dissociation. In the following, we would like to critically review these findings in the context of the human literature on dissociation as well as highlight the challenges in translational neuroscience to link complex behavioral phenotypes in psychiatric syndromes to circumscribed circuit mechanisms.

17.
Nat Commun ; 12(1): 6288, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725348

RESUMO

Perception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors' influence on perception and provide constraints on theories about long-term priors' influence on perception.


Assuntos
Retroalimentação Sensorial , Percepção Visual , Adulto , Feminino , Humanos , Masculino , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem
18.
Front Hum Neurosci ; 15: 702768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456697

RESUMO

Language comprehension relies on integrating words into progressively more complex structures, like phrases and sentences. This hierarchical structure-building is reflected in rhythmic neural activity across multiple timescales in E/MEG in healthy, awake participants. However, recent studies have shown evidence for this "cortical tracking" of higher-level linguistic structures also in a proportion of unresponsive patients. What does this tell us about these patients' residual levels of cognition and consciousness? Must the listener direct their attention toward higher level speech structures to exhibit cortical tracking, and would selective attention across levels of the hierarchy influence the expression of these rhythms? We investigated these questions in an EEG study of 72 healthy human volunteers listening to streams of monosyllabic isochronous English words that were either unrelated (scrambled condition) or composed of four-word-sequences building meaningful sentences (sentential condition). Importantly, there were no physical cues between four-word-sentences. Rather, boundaries were marked by syntactic structure and thematic role assignment. Participants were divided into three attention groups: from passive listening (passive group) to attending to individual words (word group) or sentences (sentence group). The passive and word groups were initially naïve to the sentential stimulus structure, while the sentence group was not. We found significant tracking at word- and sentence rate across all three groups, with sentence tracking linked to left middle temporal gyrus and right superior temporal gyrus. Goal-directed attention to words did not enhance word-rate-tracking, suggesting that word tracking here reflects largely automatic mechanisms, as was shown for tracking at the syllable-rate before. Importantly, goal-directed attention to sentences relative to words significantly increased sentence-rate-tracking over left inferior frontal gyrus. This attentional modulation of rhythmic EEG activity at the sentential rate highlights the role of attention in integrating individual words into complex linguistic structures. Nevertheless, given the presence of high-level cortical tracking under conditions of lower attentional effort, our findings underline the suitability of the paradigm in its clinical application in patients after brain injury. The neural dissociation between passive tracking of sentences and directed attention to sentences provides a potential means to further characterise the cognitive state of each unresponsive patient.

19.
Epilepsy Behav ; 123: 108209, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416521

RESUMO

Interictal epileptiform discharges (IEDs) can impair memory. The properties of IEDs most detrimental to memory, however, are undefined. We studied the impact of temporal and spatial characteristics of IEDs on list learning. Subjects completed a memory task during intracranial EEG recordings including hippocampal depth and temporal neocortical subdural electrodes. Subjects viewed a series of objects, and after a distracting task, recalled the objects from the list. The impacts of IED presence, duration, and propagation to neocortex during encoding of individual stimuli were assessed. The effects of IED total number and duration during maintenance and recall periods on delayed recall performance were also determined. The influence of IEDs during recall was further investigated by comparing the likelihood of IEDs preceding correctly recalled items vs. periods of no verbal response. Across 6 subjects, we analyzed 28 hippocampal and 139 lateral temporal contacts. Recall performance was poor, with a median of 17.2% correct responses (range 10.4-21.9%). Interictal epileptiform discharges during encoding, maintenance, and recall did not significantly impact task performance, and there was no significant difference between the likelihood of IEDs during correct recall vs. periods of no response. No significant effects of discharge duration during encoding, maintenance, or recall were observed. Interictal epileptiform discharges with spread to lateral temporal cortex during encoding did not adversely impact recall. A post hoc analysis refining model assumptions indicated a negative impact of IED count during the maintenance period, but otherwise confirmed the above results. Our findings suggest no major effect of hippocampal IEDs on list learning, but study limitations, such as baseline hippocampal dysfunction, should be considered. The impact of IEDs during the maintenance period may be a focus of future research.


Assuntos
Eletroencefalografia , Epilepsia do Lobo Temporal , Eletrocorticografia , Hipocampo , Humanos , Rememoração Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...