Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Signal ; 16(778): eabp9586, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976863

RESUMO

Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.


Assuntos
Cisteína , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Cisteína/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/genética
2.
Exp Parasitol ; 243: 108413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367499

RESUMO

Leishmania (Leishmania) infantum is the causative agent of visceral leishmaniasis, while L. (L.) amazonensis is associated with localized cutaneous and diffuse leishmaniasis, which can affect different organ tissues leading to visceral manifestations in some hosts. The wide range of clinical manifestations of leishmaniasis depends on host factors such as the immune response and on the species of Leishmania involved in the infection. Macrophages are the main infected cells in the vertebrate host, and proteins play a pivotal role in Leishmania-macrophage interactions. Here, we performed difference gel electrophoresis (DIGE) and shotgun quantitative mass spectrometry-based proteomics by means of tandem mass tags (TMT) isobaric peptide labeling followed by LC-MS/MS to investigate differentially abundant proteins in BALB/c macrophages infected with these Leishmania species. Using DIGE for comparison, we found that 2.34% spots (29/1240) were differentially intense in infected murine macrophages. Leishmania (L.) infantum and L. (L.) amazonensis induced similar changes in the host cells; 11 spots were selected as differentially intense in each species and seven in the uninfected control group. Using TMT, 5939 Mus musculus proteins were identified, of which 410 and 433 were differentially abundant in L. (L.) infantum and L. (L.) amazonensis infections, respectively, while 170 proteins were commonly regulated by both the species. Gene ontology enrichment analysis indicated that Leishmania infection interfered with apoptotic mechanisms in macrophages and induced epigenetic changes that may affect gene transcription. Moreover, downregulation of proteins such as PYCARD and MyD88 seemed to influence the inflammatory process in L. (L.) amazonensis infection, whereas upregulation of TAP1 and ERAP1 was involved in the adaptive immune response in L. (L.) infantum infection. Differentially abundant proteins identified in this study may contribute to a better understanding of the factors that determine the course of infection. Our results suggest several possible targets for vaccines, drugs, and diagnosis of leishmaniasis.


Assuntos
Leishmania infantum , Leishmaniose , Camundongos , Animais , Proteoma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Macrófagos , Camundongos Endogâmicos BALB C
3.
Infectio ; 26(2): 172-180, Jan.-June 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1356265

RESUMO

Abstract Accidents caused by scorpions represent a major health problem on planet, both in individual terms and in the public health sphere. Morbid events can occur in different manifestations, and different clinical conditions must be differentiated for adequate treatment. In addition to the potential injury to human hosts, scorpion venom has been investigated for the therapy of several illnesses. Based on these aspects, the present article aims to present the clinical, diagnostic, therapeutic and prophylactic aspects of scorpionism.


Resumen Los accidentes causados por escorpiones representan un problema mayor de salud pública tanto en términos de daños individuales como en la esfera de la salud pública. Los eventos mórbidos pueden ocurrir con diferentes manifestaciones y condiciones clínicas que deben ser diferenciadas para un manejo adecuado. Ade más del daño potencial que ocasionan a los humanos, el veneno del escorpión ha sido estudiado con el fin de analizar su potencia aplicación para le tratamiento de algunas enfermedades. Este articulo presenta una actualización sobre los aspectos clínicos, terapéuticos y profilácticos del escorpionismo.

4.
Front Cell Infect Microbiol ; 12: 824968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242720

RESUMO

Leishmania (Viannia) braziliensis is the main etiological agent of cutaneous and mucocutaneous leishmaniasis in Latin America. Non-ulcerated atypical tegumentary leishmaniasis cases caused by L. braziliensis have been reported in several regions of the American continent, including the Xacriabá indigenous reserve in São João das Missões/Minas Gerais, Brazil. Parasites isolated from these atypical clinical lesions are resistant to antimony-based therapeutics. In the present study, proteins displaying differential abundance in two strains of L. braziliensis isolated from patients with atypical lesions compared with four strains isolated from patients with typical lesions were identified using a quantitative proteomics approach based on tandem mass tag labeling (TMT) and mass spectrometry. A total of 532 (P<0.05) differentially abundant proteins were identified (298 upregulated and 234 downregulated) in strains from atypical lesions compared to strains from typical lesions. Prominent positively regulated proteins in atypical strains included those that may confer greater survival inside macrophages, proteins related to antimony resistance, and proteins associated with higher peroxidase activity. Additionally, we identified proteins showing potential as new drug and vaccine targets. Our findings contribute to the characterization of these intriguing L. braziliensis strains and provide a novel perspective on Atypical Cutaneous Leishmaniasis (ACL) cases that have been associated with therapeutic failures.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Leishmaniose Mucocutânea , Antimônio/farmacologia , Antimônio/uso terapêutico , Brasil , Humanos , Leishmaniose Cutânea/parasitologia , Leishmaniose Mucocutânea/parasitologia , Pele
5.
Front Mol Biosci ; 8: 680940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169094

RESUMO

Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of µmol L-1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.

6.
Exp Parasitol ; 218: 107964, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822697

RESUMO

Protozoan parasites of the genus Leishmania are causative agents of leishmaniasis, a wide range of diseases affecting 12 million people worldwide. The species L. infantum and L. amazonensis are etiologic agents of visceral and cutaneous leishmaniasis, respectively. Most proteome analyses of Leishmania have been carried out on whole-cell extracts, but such an approach tends to underrepresent membrane-associated proteins due to their high hydrophobicity and low solubility. Considering the relevance of this category of proteins in virulence, invasiveness and the host-parasite interface, this study applied label-free proteomics to assess the plasma membrane sub-proteome of L. infantum and L. amazonensis. The number of proteins identified in L. infantum and L. amazonensis promastigotes was 1168 and 1455, respectively. After rigorous data processing and mining, 157 proteins were classified as putative plasma membrane-associated proteins, of which 56 proteins were detected in both species, six proteins were detected only in L. infantum and 39 proteins were exclusive to L. amazonensis. The quantitative analysis revealed that two proteins were more abundant in L. infantum, including the glucose transporter 2, and five proteins were more abundant in L. amazonensis. The identified proteins associated with distinct processes and functions. In this regard, proteins of L. infantum were linked to metabolic processes whereas L. amazonensis proteins were involved in signal transduction. Moreover, transmembrane transport was a significant process among the group of proteins detected in both species and members of the superfamily of ABC transporters were highly represented. Interestingly, some proteins of this family were solely detected in L. amazonensis, such as ABCA9. GP63, a well-known virulence factor, was the only GPI-anchored protein identified in the membrane preparations of both species. Finally, we found several proteins with uncharacterized functions, including differentially abundant ones, highlighting a gap in the study of Leishmania proteins. Proteins characterization could provide a better biological understanding of these parasites and deliver new possibilities regarding the discovery of therapeutic targets, drug resistance and vaccine candidates.


Assuntos
Leishmania infantum/química , Leishmania mexicana/química , Proteínas de Membrana/análise , Proteômica/métodos , Proteínas de Protozoários/análise , Animais , Membrana Celular/química , Cromatografia Líquida , Biologia Computacional , Cricetinae , Transportador de Glucose Tipo 2/análise , Interações Hospedeiro-Parasita , Leishmania infantum/metabolismo , Leishmania infantum/patogenicidade , Leishmania infantum/ultraestrutura , Leishmania mexicana/ultraestrutura , Macrófagos Peritoneais/parasitologia , Espectrometria de Massas , Mesocricetus , Metaloendopeptidases/análise , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Espectrometria de Massas em Tandem , Virulência
7.
Toxicon ; 184: 19-27, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479836

RESUMO

Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Animais , Antivenenos , Western Blotting , Brasil , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , L-Aminoácido Oxidase/metabolismo , Peru , Fosfolipases A2/química , Proteômica , Serina Proteases/metabolismo , Células Vero
8.
Front Microbiol ; 9: 667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681894

RESUMO

The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1ß cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.

9.
J Proteome Res ; 12(7): 3460-70, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23731212

RESUMO

Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteome and N-glycoproteome was performed to improve our knowledge on the molecular diversity of the proteinaceous toxins. We combined two peptide identification methodologies, i.e., database search and de novo sequencing, to achieve a more comprehensive overview of the molecular diversity of the venoms. A total of 147 proteins were identified, including neurotoxins, enzymes, bradykinin-potentiating peptides, and molecules with antimicrobial and diuretic activities. Among those, three proteins were found to be phosphorylated, and one N-glycosylated. Finally, cleavage of toxin polypeptide chains seems to be a common post-translational modification in the venom since 80% of the identified molecules were, in fact, products of toxins proteolysis.


Assuntos
Glicoproteínas/isolamento & purificação , Fosfoproteínas/isolamento & purificação , Proteoma/metabolismo , Venenos de Escorpião/metabolismo , Sequência de Aminoácidos , Animais , Glicoproteínas/classificação , Neurotoxinas/metabolismo , Fosfoproteínas/classificação , Escorpiões/metabolismo
10.
Mol Cell Proteomics ; 12(9): 2497-508, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722186

RESUMO

The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14-3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a comprehensive (phospho)proteomics resource for studying signaling from the point of view of both host and pathogen during a plant-pathogen interaction.


Assuntos
Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfopeptídeos/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Triticum/enzimologia , Triticum/imunologia
11.
Mol Cell Proteomics ; 11(10): 945-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22778145

RESUMO

Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding light on the mechanisms underlying the grape infection.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Mariposas/patogenicidade , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Vitis/genética , Acetilação , Motivos de Aminoácidos , Animais , Cromatografia Líquida , Frutas/imunologia , Frutas/parasitologia , Glicosilação , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mariposas/fisiologia , Fosfopeptídeos/análise , Fosforilação , Doenças das Plantas , Proteínas de Plantas/metabolismo , Proteômica , Coloração e Rotulagem , Espectrometria de Massas em Tandem , Vitis/imunologia , Vitis/parasitologia
12.
J Proteome Res ; 11(3): 1949-57, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22256963

RESUMO

N-Linked glycoproteins are involved in several diseases and are important as potential diagnostic molecules for biomarker discovery. Therefore, it is important to provide sensitive and reliable analytical methods to identify not only the glycoproteins but also the sites of glycosylation. Recently, numerous strategies to identify N-linked glycosylation sites have been described. These strategies have been applied to cell lines and several tissues with the aim of identifying many hundreds (or thousands) of glycosylation events. With high-throughput strategies however, there is always the potential for false positives. The confusion arises since the protein N-glycosidase F (PNGase F) reaction used to separate N-glycans from formerly glycosylated peptides catalyzes the cleavage and deamidates the asparagine residue. This is typically viewed as beneficial since it acts to highlight the modification site. We have evaluated this common large-scale N-linked glycoproteomic strategy and proved potential pitfalls using Escherichia coli as a model organism, since it lacks the N-glycosylation machinery found in mammalian systems and some pathogenic microbes. After isolation and proteolytic digestion of E. coli membrane proteins, we investigated the presence of deamidated asparagines. The results show the presence of deamidated asparagines especially with close proximity to a glycine residue or other small amino acid, as previously described for spontaneous in vivo deamidation. Moreover, we have identified deamidated peptides with incorporation of (18)O, showing the pitfalls of glycosylation site assignment based on deamidation of asparagine induced by PNGase F in (18)O-water in large-scale analyses. These data experimentally prove the need for more caution in assigning glycosylation sites and "new" N-linked consensus sites based on common N-linked glycoproteomics strategies without proper control experiments. Besides showing the spontaneous deamidation, we provide alternative methods for validation that should be used in such experiments.


Assuntos
Glicoproteínas/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Artefatos , Asparagina/química , Asparagina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/química , Glicosilação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteólise , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...