Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(3): 1252-1253, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907320
2.
Nature ; 534(7605): 79-81, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251278

RESUMO

Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

3.
Nature ; 517(7534): 339-41, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25592538

RESUMO

Chondrules are the millimetre-scale, previously molten, spherules found in most meteorites. Before chondrules formed, large differentiating planetesimals had already accreted. Volatile-rich olivine reveals that chondrules formed in extremely solid-rich environments, more like impact plumes than the solar nebula. The unique chondrules in CB chondrites probably formed in a vapour-melt plume produced by a hypervelocity impact with an impact velocity greater than 10 kilometres per second. An acceptable formation model for the overwhelming majority of chondrules, however, has not been established. Here we report that impacts can produce enough chondrules during the first five million years of planetary accretion to explain their observed abundance. Building on a previous study of impact jetting, we simulate protoplanetary impacts, finding that material is melted and ejected at high speed when the impact velocity exceeds 2.5 kilometres per second. Using a Monte Carlo accretion code, we estimate the location, timing, sizes, and velocities of chondrule-forming impacts. Ejecta size estimates indicate that jetted melt will form millimetre-scale droplets. Our radiative transfer models show that these droplets experience the expected cooling rates of ten to a thousand kelvin per hour. An impact origin for chondrules implies that meteorites are a byproduct of planet formation rather than leftover building material.

4.
Philos Trans A Math Phys Eng Sci ; 372(2024): 20130168, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25114301

RESUMO

Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin.

5.
Science ; 340(6140): 1552-5, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23722426

RESUMO

High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull's-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.

6.
Nature ; 485(7396): 75-7, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22535246

RESUMO

Impact craters are the most obvious indication of asteroid impacts, but craters on Earth are quickly obscured or destroyed by surface weathering and tectonic processes. Earth's impact history is inferred therefore either from estimates of the present-day impactor flux as determined by observations of near-Earth asteroids, or from the Moon's incomplete impact chronology. Asteroids hitting Earth typically vaporize a mass of target rock comparable to the projectile's mass. As this vapour expands in a large plume or fireball, it cools and condenses into molten droplets called spherules. For asteroids larger than about ten kilometres in diameter, these spherules are deposited in a global layer. Spherule layers preserved in the geologic record accordingly provide information about an impact even when the source crater cannot be found. Here we report estimates of the sizes and impact velocities of the asteroids that created global spherule layers. The impact chronology from these spherule layers reveals that the impactor flux was significantly higher 3.5 billion years ago than it is now. This conclusion is consistent with a gradual decline of the impactor flux after the Late Heavy Bombardment.

7.
Science ; 311(5766): 1453-5, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16456037

RESUMO

We report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.0 micrometers. These absorptions are well modeled as a mixture of nearby non-ice regions and 3 to 6% water ice particles 10 to 50 micrometers in diameter. These particle sizes are larger than those ejected during the impact experiment, which suggests that the surface deposits are loose aggregates. The total area of exposed water ice is substantially less than that required to support the observed ambient outgassing from the comet, which likely has additional source regions below the surface.


Assuntos
Gelo/análise , Meteoroides , Espectrofotometria Infravermelho
8.
Science ; 310(5746): 258-64, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16150978

RESUMO

Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.


Assuntos
Meteoroides , Júpiter , Compostos Orgânicos/análise , Análise Espectral
9.
Nature ; 434(7030): 157, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15758988

RESUMO

Meteor Crater in Arizona was the first terrestrial structure to be widely recognized as a meteorite impact scar and has probably been more intensively studied than any other impact crater on Earth. We have discovered something surprising about its mode of formation--namely that the surface-impact velocity of the iron meteorite that created Meteor Crater was only about 12 km s(-1). This is close to the 9.4 km s(-1) minimum originally proposed but far short of the 15-20 km s(-1) that has been widely assumed--a realization that clears up a long-standing puzzle about why the crater does not contain large volumes of rock melted by the impact.

10.
Nature ; 424(6944): 22-3, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12840738
11.
Astrobiology ; 3(1): 207-15, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12804373

RESUMO

It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.


Assuntos
Evolução Planetária , Meio Ambiente Extraterreno , Vida , Meteoroides , Sistema Solar , Júpiter , Probabilidade , Saturno
12.
Science ; 296(5570): 1037-8, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-12004107
13.
Microbiol Mol Biol Rev ; 64(3): 548-72, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10974126

RESUMO

Endospores of Bacillus spp., especially Bacillus subtilis, have served as experimental models for exploring the molecular mechanisms underlying the incredible longevity of spores and their resistance to environmental insults. In this review we summarize the molecular laboratory model of spore resistance mechanisms and attempt to use the model as a basis for exploration of the resistance of spores to environmental extremes both on Earth and during postulated interplanetary transfer through space as a result of natural impact processes.


Assuntos
Bacillus/fisiologia , Meio Ambiente , Meio Ambiente Extraterreno , Voo Espacial , Esporos Bacterianos/fisiologia
14.
Annu Rev Earth Planet Sci ; 28: 141-67, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11583040

RESUMO

Natural impacts in which the projectile strikes the target vertically are virtually nonexistent. Nevertheless, our inherent drive to simplify nature often causes us to suppose most impacts are nearly vertical. Recent theoretical, observational, and experimental work is improving this situation, but even with the current wealth of studies on impact cratering, the effect of impact angle on the final crater is not well understood. Although craters' rims may appear circular down to low impact angles, the distribution of ejecta around the crater is more sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. Experimental studies established that crater dimensions depend only on the vertical component of the impact velocity. The shock wave generated by the impact weakens with decreasing impact angle. As a result, melting and vaporization depend on impact angle; however, these processes do not seem to depend on the vertical component of the velocity alone. Finally, obliquity influences the fate of the projectile: in particular, the amount and velocity of ricochet are a strong function of impact angle.


Assuntos
Evolução Planetária , Meteoroides , Modelos Teóricos , Planetas , Simulação por Computador , Gravitação , Lua
15.
Nature ; 373(6510): 104-5, 1995 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-7816086
16.
Nature ; 343(6255): 251-4, 1990 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11536461

RESUMO

An impressive amount of evidence supports the proposal of Alvarez et al. that the Cretaceous era was ended abruptly by the impact of a comet or asteroid. The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact. Here we show that the thermal radiation produced by the ballistic re-entry of ejecta condensed from the vapour plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.


Assuntos
Planeta Terra , Incêndios , Temperatura Alta , Modelos Teóricos , Atmosfera , Evolução Biológica , Fenômenos Geológicos , Geologia , Meteoroides , Paleontologia
17.
J Geophys Res ; 94(B9): 12433-41, 1989 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-11539795

RESUMO

Viking orbiter images show grooves and chains of pits crossing the surface of Phobos, many of which converge toward the large crater Stickney or its antipode. Although it has been proposed that the pits and grooves are chains of secondary craters, their morphology and geometric relations suggest that they are the surface traces of fractures in the underlying solid body of Phobos. Several models have been proposed to explain the pits, of which the most plausible are gas venting and drainage of regolith into open fractures. the latter mechanism is best supported by the image data and is the mechanism studied in this investigation. Drainage pits and fissures are modeled experimentally by using two rigid substrate plates placed edge to edge and covered by uniform thicknesses of dry fragmental debris (simulated regolith). Fracture extension is simulated by drawing the plates apart, allowing drainage of regolith into the newly created void. A typical drainage experiment begins with a shallow depression on the surface of the regolith, above the open fissure. Increased drainage causes local drainage pits to form; continued drainage causes the pits to coalesce, forming a cuspate groove. The resulting experimental patterns of pits and grooves have pronounced similarities to those observed on Phobos. Characteristics such as lack of raised rims, linearity of grooves and chains of pits, uniform spacing of pits, and progression from discrete pits to cuspate grooves are the same in the experiments and on Phobos. In contrast, gas-venting pits occur in irregular chains and have raised rims. These experiments thus indicate that the Phobos grooves and pits formed as drainage structures. The pit spacing in an experiment is measured at the time that the maximum number of pits forms, prior to groove development. The average pit spacing is compared to the regolith thickness for each material. Regression line fits indicate that the average spacing of drainage pits in unconsolidated, noncohesive regolith is nearly equal to the thickness of regolith and appears to gbe independent of the angle of repose, within the resolution of our experiments. This provides a simple means of estimating regolith thickness where drainage pits are present. On Phobos, two locations differing by 90 degrees in longitude have average pit spacings that suggest regolith thicknesses of 290 and 300 m, suggesting that large areas of Phobos have a nearly uniform regolith thickness of approximately 300 m.


Assuntos
Meio Ambiente Extraterreno , Geologia , Marte , Voo Espacial , Sedimentos Geológicos/análise , Fenômenos Geológicos , Modelos Teóricos , Análise de Regressão , Solo , Astronave/instrumentação
18.
Science ; 245(4914): 195-6, 1989 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-17787879
19.
Nature ; 338(6215): 487-9, 1989 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11536608

RESUMO

Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Marte , Modelos Teóricos , Água , Pressão Atmosférica
20.
Icarus ; 81: 113-31, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-11542164

RESUMO

In previous papers in this series the smoothed particle hydrodynamics method (SPH) has been used to explore the conditions in which a major planetary collision may have been responsible for the formation of the Moon. In Paper II (W. Benz, W.L. Slattery, and A.G.W. Cameron 1987, Icarus 71, 30-45) it was found that the optimum conditions were obtained when the mass ratio of the impactor to the protoearth was 0.136. In the present paper we investigate the importance of the equation of state by running this optimum case several times and varying the equation of state and other related parameters. The two equations of state compared are the Tillotson (used in the previous papers) and the CHART D/CSQ ANEOS. Because of differences in these equations of state, including the fact that different types of rocks were used in association with each, it was not possible to prepare initial planetary models that were comparable in every respect, so several different simulations were necessary in which different planetary parameters were matched between the equations of state. We also used a new version of the SPH code. The results reaffirmed the previous principal conclusions: the collisions produced a disk of rocky material in orbit, with most of the material derived from the impacting object. These results indicate that the equation of state is not a critical factor in determining the amount of material thrown into orbit. This confirms the conclusions of Paper II that gravitational torques, and not pressure gradients, inject the orbiting mass. However, the way this mass is distributed in orbit is affected by the equation of state and the choice of rock material, the Tillotson equation for granite giving slightly larger mean orbital radius for the particles left in orbit than the ANEOS dunite for the same impact parameter. We also find, compared to Paper II, that in all subsequent cases the new SPH code leads to a slightly less extended prelunar accretion disk. We think this is due to the new shape adopted for the kernel. A few additional calculations were made to test the effects of increasing the impact parameter on the calculations, other parameters remaining unchanged. The motivation for this was that solar tides will have reduced the Earth-Moon angular momentum somewhat over the course of time. An increment of 6% in the angular momentum of the collision increases the amount of iron-free material in orbit and its mean orbital radius, but more than that leaves increasing amounts of iron in orbit (the iron has a small mean orbital radius). The debris from the destroyed impacting object tends to form a straight rotating bar which is very effective in transferring angular momentum. If the material near the end of the bar extends well beyond the Roche lobe, it may become unstable against gravitational clumping.


Assuntos
Simulação por Computador , Evolução Planetária , Meteoroides , Modelos Teóricos , Lua , Fenômenos Astronômicos , Astronomia , Planeta Terra , Gravitação , Ferro/análise , Matemática , Sistema Solar , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...