Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 221(3): 1544-1555, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30294977

RESUMO

Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21ß position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21ß oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21ß hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21ß oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.


Assuntos
Avena/enzimologia , Oxirredutases/metabolismo , Triterpenos/metabolismo , Acilação , Sistema Enzimático do Citocromo P-450/metabolismo , Estudos de Associação Genética , Hidroxilação , Mutação/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Filogenia , Alicerces Teciduais/química , Nicotiana/metabolismo , Transcriptoma/genética
2.
Nat Protoc ; 13(12): 2944-2963, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446746

RESUMO

'Speed breeding' (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.


Assuntos
Avena/crescimento & desenvolvimento , Brachypodium/crescimento & desenvolvimento , Brassica/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Hordeum/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Triticum/crescimento & desenvolvimento , Melhoramento Vegetal/economia , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 113(30): E4407-14, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27412861

RESUMO

Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.


Assuntos
Aminoácidos/genética , Transferases Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Avena/enzimologia , Avena/genética , Avena/metabolismo , Sequência Conservada/genética , Ciclização , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Triterpenos/química
4.
Proc Natl Acad Sci U S A ; 111(23): 8679-84, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912185

RESUMO

Sterols have important functions in membranes and signaling. Plant sterols are synthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene to cycloartenol. Plants also convert 2,3-oxidosqualene to other sterol-like cyclization products, including the simple triterpene ß-amyrin. The function of ß-amyrin per se is unknown, but this molecule can serve as an intermediate in the synthesis of more complex triterpene glycosides associated with plant defense. ß-Amyrin is present at low levels in the roots of diploid oat (Avena strigosa). Oat roots also synthesize the ß-amyrin-derived triterpene glycoside avenacin A-1, which provides protection against soil-borne diseases. The genes for the early steps in avenacin A-1 synthesis [saponin-deficient 1 and 2 (Sad1 and Sad2)] have been recruited from the sterol pathway by gene duplication and neofunctionalization. Here we show that Sad1 and Sad2 are regulated by an ancient root developmental process that is conserved across diverse species. Sad1 promoter activity is dependent on an L1 box motif, implicating sterol/lipid-binding class IV homeodomain leucine zipper transcription factors as potential regulators. The metabolism of ß-amyrin is blocked in sad2 mutants, which therefore accumulate abnormally high levels of this triterpene. The accumulation of elevated levels of ß-amyrin in these mutants triggers a "superhairy" root phenotype. Importantly, this effect is manifested very early in the establishment of the root epidermis, causing a greater proportion of epidermal cells to be specified as root hair cells rather than nonhair cells. Together these findings suggest that simple triterpenes may have widespread and as yet largely unrecognized functions in plant growth and development.


Assuntos
Avena/metabolismo , Ácido Oleanólico/análogos & derivados , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , Triterpenos/metabolismo , Avena/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ácido Oleanólico/metabolismo , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saponinas/metabolismo , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 110(35): E3360-7, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940321

RESUMO

Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, ß-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate ß-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13ß-epoxy-3ß,16ß-dihydroxy-oleanane (12,13ß-epoxy-16ß-hydroxy-ß-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.


Assuntos
Anti-Infecciosos/metabolismo , Avena/metabolismo , Esterol 14-Desmetilase/metabolismo , Triterpenos/metabolismo , Sequência de Aminoácidos , Transferases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/genética , Nicotiana/enzimologia
6.
Mol Microbiol ; 43(1): 135-46, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11849542

RESUMO

Hybrids of the Streptomyces coelicolor conjugative plasmid SCP2* and the Mycobacterium plasmid pAL5000 were transferred from Streptomyces coelicolor or Streptomyces lividans to Mycobacterium smegmatis mc2155 in plate crosses. Inactivation of the SCP2* transfer function did not prevent or reduce plasmid transfer. This transfer was DNase I sensitive and thus involved release of DNA from Streptomyces, followed by transformation of M. smegmatis. M. smegmatis growing on specific solid media was also transformed by pure CCC and linear plasmid DNA. Small plasmids were taken up intact but large plasmids suffered deletions. Competence developed within 24 h of incubation at 30 degrees C or 37 degrees C, and up to 400 transformants were obtained per microg of CCC plasmid DNA. Transformation frequencies were higher when M. smegmatis was co-cultivated with plasmid-free Streptomyces, but unaffected by resident homologous sequences or inactivation of recA in M. smegmatis. Spontaneous transformation was also observed with a circular Streptomyces transposable element which inserted into chromosomal sites. Transformative plasmid transfer was also shown to occur between M. smegmatis strains. This is the first report of non-artificially induced, spontaneous plasmid transformation in Mycobacterium.


Assuntos
DNA Bacteriano , Mycobacterium smegmatis/genética , Plasmídeos , Streptomyces/genética , Transformação Bacteriana , Replicação do DNA , Elementos de DNA Transponíveis , Desoxirribonuclease I , Mycobacterium smegmatis/crescimento & desenvolvimento , Recombinases Rec A/metabolismo , Deleção de Sequência , Streptomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA