Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(22): 8299-304, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24847068

RESUMO

Ectomycorrhizal fungi, such as Laccaria bicolor, support forest growth and sustainability by providing growth-limiting nutrients to their plant host through a mutualistic symbiotic relationship with host roots. We have previously shown that the effector protein MiSSP7 (Mycorrhiza-induced Small Secreted Protein 7) encoded by L. bicolor is necessary for the establishment of symbiosis with host trees, although the mechanistic reasoning behind this role was unknown. We demonstrate here that MiSSP7 interacts with the host protein PtJAZ6, a negative regulator of jasmonic acid (JA)-induced gene regulation in Populus. As with other characterized JASMONATE ZIM-DOMAIN (JAZ) proteins, PtJAZ6 interacts with PtCOI1 in the presence of the JA mimic coronatine, and PtJAZ6 is degraded in plant tissues after JA treatment. The association between MiSSP7 and PtJAZ6 is able to protect PtJAZ6 from this JA-induced degradation. Furthermore, MiSSP7 is able to block--or mitigate--the impact of JA on L. bicolor colonization of host roots. We show that the loss of MiSSP7 production by L. bicolor can be complemented by transgenically varying the transcription of PtJAZ6 or through inhibition of JA-induced gene regulation. We conclude that L. bicolor, in contrast to arbuscular mycorrhizal fungi and biotrophic pathogens, promotes mutualism by blocking JA action through the interaction of MiSSP7 with PtJAZ6.


Assuntos
Ciclopentanos/metabolismo , Laccaria/metabolismo , Micorrizas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Populus/genética , Proteínas de Arabidopsis/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Laccaria/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Populus/imunologia , Populus/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Simbiose/fisiologia
2.
Mol Plant Microbe Interact ; 25(6): 765-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22375709

RESUMO

Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.


Assuntos
Arabidopsis/classificação , Arabidopsis/microbiologia , Fotossíntese/fisiologia , Doenças das Plantas/imunologia , Pseudomonas fluorescens/fisiologia , Arabidopsis/metabolismo , Sinalização do Cálcio , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...