Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 135(1): 91-101, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16569439

RESUMO

Recovery of recombinant, negative-strand, nonsegmented RNA viruses from a genomic cDNA clone requires a rescue system that promotes de novo assembly of a functional ribonucleoprotein (RNP) complex in the cell cytoplasm. This is accomplished typically by cotransfecting permissive cells with multiple plasmids that encode the positive-sense genomic RNA, the nucleocapsid protein (N or NP), and the two subunits of the viral RNA-dependent RNA polymerase (L and P). The transfected plasmids are transcribed in the cell cytoplasm by phage T7 RNA polymerase (T7 RNAP), which usually is supplied by infection with a recombinant vaccinia virus or through use of a stable cell line that expresses the polymerase. Although both methods of providing T7 RNAP are effective neither is ideal for viral vaccine development for a number of reasons. Therefore, it was necessary to modify existing technology to make it possible to routinely rescue a variety of recombinant viruses when T7 RNAP was provided by a cotransfected expression plasmid. Development of a broadly applicable procedure required optimization of the helper-virus-free methodology, which resulted in several modifications that improved rescue efficiency such as inclusion of plasmids encoding viral glycoproteins and matrix protein, heat shock treatment, and use of electroporation. The combined effect of these enhancements produced several important benefits including: (1) a helper-virus-free methodology capable of rescuing a diverse variety of paramyxoviruses and recombinant vesicular stomatitis virus (rVSV); (2) methodology that functioned effectively when using Vero cells, a suitable substrate for vaccine production; and (3) a method that enabled rescue of highly attenuated recombinant viruses, which had proven refractory to rescue using published procedures.


Assuntos
Paramyxovirinae/isolamento & purificação , Vacinas Atenuadas , Vírus da Estomatite Vesicular Indiana/isolamento & purificação , Vacinas Virais/genética , Animais , Chlorocebus aethiops , DNA Recombinante , DNA Viral , RNA Polimerases Dirigidas por DNA/genética , Vírus Auxiliares/genética , Mutação , Paramyxovirinae/genética , Plasmídeos/genética , RNA Viral/metabolismo , Transfecção , Vacinas Atenuadas/genética , Vacinas Sintéticas/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...