Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(6): 1083-1096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816616

RESUMO

Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Centro Germinativo/imunologia , Animais , Camundongos , Humanos , Linfócitos B/imunologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Afinidade de Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Técnicas de Introdução de Genes , Camundongos Transgênicos , Anticorpos Amplamente Neutralizantes/imunologia , Camundongos Endogâmicos C57BL
2.
Immunity ; 55(11): 2168-2186.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179690

RESUMO

Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , RNA Mensageiro/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana
3.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788599

RESUMO

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Epitopos/genética , Engenharia Genética , Humanos , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Relação Estrutura-Atividade , Vacinação
4.
EMBO J ; 40(2): e105926, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258500

RESUMO

B-cell receptor (BCR) knock-in (KI) mouse models play an important role in vaccine development and fundamental immunological studies. However, the time required to generate them poses a bottleneck. Here we report a one-step CRISPR/Cas9 KI methodology to combine the insertion of human germline immunoglobulin heavy and light chains at their endogenous loci in mice. We validate this technology with the rapid generation of three BCR KI lines expressing native human precursors, instead of computationally inferred germline sequences, to HIV broadly neutralizing antibodies. We demonstrate that B cells from these mice are fully functional: upon transfer to congenic, wild type mice at controlled frequencies, such B cells can be primed by eOD-GT8 60mer, a germline-targeting immunogen currently in clinical trials, recruited to germinal centers, secrete class-switched antibodies, undergo somatic hypermutation, and differentiate into memory B cells. KI mice expressing functional human BCRs promise to accelerate the development of vaccines for HIV and other infectious diseases.


Assuntos
Linfócitos B/metabolismo , Sistemas CRISPR-Cas/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Sistemas CRISPR-Cas/imunologia , Linhagem Celular , Técnicas de Introdução de Genes/métodos , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Células HEK293 , HIV-1/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores de Antígenos de Linfócitos B/imunologia
5.
Science ; 366(6470)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31672916

RESUMO

Vaccine induction of broadly neutralizing antibodies (bnAbs) to HIV remains a major challenge. Germline-targeting immunogens hold promise for initiating the induction of certain bnAb classes; yet for most bnAbs, a strong dependence on antibody heavy chain complementarity-determining region 3 (HCDR3) is a major barrier. Exploiting ultradeep human antibody sequencing data, we identified a diverse set of potential antibody precursors for a bnAb with dominant HCDR3 contacts. We then developed HIV envelope trimer-based immunogens that primed responses from rare bnAb-precursor B cells in a mouse model and bound a range of potential bnAb-precursor human naïve B cells in ex vivo screens. Our repertoire-guided germline-targeting approach provides a framework for priming the induction of many HIV bnAbs and could be applied to most HCDR3-dominant antibodies from other pathogens.


Assuntos
Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Evolução Molecular Direcionada/métodos , Anticorpos Anti-HIV/imunologia , Imunogenicidade da Vacina , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Regiões Determinantes de Complementaridade/imunologia , Modelos Animais de Doenças , Células HEK293 , Anticorpos Anti-HIV/química , Humanos , Camundongos , Camundongos Knockout , Células Precursoras de Linfócitos B/imunologia
6.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30087111

RESUMO

Here, we describe a one-step, in vivo CRISPR/Cas9 nuclease-mediated strategy to generate knock-in mice. We produced knock-in (KI) mice wherein a 1.9-kb DNA fragment bearing a pre-arranged human B-cell receptor heavy chain was recombined into the native murine immunoglobulin locus. Our methodology relies on Cas9 nuclease-induced double-stranded breaks directed by two sgRNAs to occur within the specific target locus of fertilized oocytes. These double-stranded breaks are subsequently repaired via homology-directed repair by a plasmid-borne template containing the pre-arranged human immunoglobulin heavy chain. To validate our knock-in mouse model, we examined the expression of the KI immunoglobulin heavy chains by following B-cell development and performing single B-cell receptor sequencing. We optimized this strategy to generate immunoglobulin KI mice in a short amount of time with a high frequency of homologous recombination (30-50%). In the future, we envision that such knock-in mice will provide much needed vaccination models to evaluate immunoresponses against immunogens specific for various infectious diseases.


Assuntos
Linfócitos B/imunologia , Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Cadeias Pesadas de Imunoglobulinas , Animais , Linfócitos B/citologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Camundongos Transgênicos
7.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021901

RESUMO

Arboviruses can cause a variety of clinical signs, including febrile illness, arthritis, encephalitis, and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006)- or a low (BTV-1IT2013)-virulence strain of BTV. Rams infected with the low-virulence BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type I interferon response, reduction of testosterone biosynthesis by Leydig cells and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily.IMPORTANCE During the recent Zika epidemic, it has become apparent that arboviruses could potentially cause reproductive health problems in male patients. Little is known regarding the effects that arboviruses have on the male reproductive tract. Here, we studied bluetongue virus (BTV), an arbovirus of ruminants, and its effects on the testes of rams. We show that BTV was able to induce testicular degeneration in naturally and experimentally infected rams. Testicular degeneration was caused by BTV replication in the endothelial cells of the peritubular area surrounding the seminiferous tubules (the functional unit of the testes) and was associated with a localized type I interferon response, destruction of the cells supporting the developing germinal cells (Sertoli cells), and reduction of testosterone synthesis. As a result of BTV infection, rams became azoospermic. This study highlights that problems in the male reproductive tract caused by arboviruses could be more common than previously thought.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/complicações , Endotélio Vascular/patologia , Infertilidade Masculina/etiologia , Doenças dos Ovinos/etiologia , Espermatogênese , Testículo/patologia , Animais , Bluetongue/patologia , Bluetongue/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Infertilidade Masculina/patologia , Masculino , Ovinos , Doenças dos Ovinos/patologia , Testículo/metabolismo , Testículo/virologia , Testosterona/análise , Virulência , Replicação Viral
8.
Front Immunol ; 9: 2892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619264

RESUMO

Sheep are not only a major livestock species globally, they are also an important large animal model for biomedical research and have contributed to our understanding of the ontogeny and architecture of the mammalian immune system. In this study, we applied immunohistochemistry and multicolor immunofluorescence in fixed and paraffin-embedded lymph nodes to phenotype the key populations of antigen presenting cells, lymphocytes, and stromal cells that orchestrate the host adaptive immune response. We used an extensive panel of antibodies directed against markers associated with dendritic cells (MHC class II, CD83, and CD208), macrophages (CD11b, CD163, and CD169), stromal cells (CNA.42, S100, and CD83), and lymphocytes (CD3, Pax5, CD4, CD8). Using different methods of tissue fixation and antigen retrieval, we provide a detailed immunophenotyping of sheep lymph nodes including the identification of potential subpopulations of antigen presenting cells and stromal cells. By characterizing cells expressing combinations of these markers in the context of their morphology and location within the lymph node architecture, we provide valuable new tools to investigate the structure, activation, and regulation of the sheep immune system in health and disease.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunofenotipagem/métodos , Linfonodos/imunologia , Linfócitos/imunologia , Inclusão em Parafina/métodos , Células Estromais/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD/imunologia , Antígenos CD/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imuno-Histoquímica , Linfonodos/citologia , Linfonodos/metabolismo , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ovinos , Células Estromais/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(41): E6238-E6247, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671646

RESUMO

Arboviruses cause acute diseases that increasingly affect global health. We used bluetongue virus (BTV) and its natural sheep host to reveal a previously uncharacterized mechanism used by an arbovirus to manipulate host immunity. Our study shows that BTV, similarly to other antigens delivered through the skin, is transported rapidly via the lymph to the peripheral lymph nodes. Here, BTV infects and disrupts follicular dendritic cells, hindering B-cell division in germinal centers, which results in a delayed production of high affinity and virus neutralizing antibodies. Moreover, the humoral immune response to a second antigen is also hampered in BTV-infected animals. Thus, an arbovirus can evade the host antiviral response by inducing an acute immunosuppression. Although transient, this immunosuppression occurs at the critical early stages of infection when a delayed host humoral immune response likely affects virus systemic dissemination and the clinical outcome of disease.


Assuntos
Doenças dos Animais/imunologia , Células Dendríticas Foliculares/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica , Viroses/veterinária , Vírus/imunologia , Doenças dos Animais/virologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Células Dendríticas Foliculares/metabolismo , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Imuno-Histoquímica , Linfonodos/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Ovinos , Células Estromais , Viremia/imunologia , Virulência , Vírus/genética
10.
J Gen Virol ; 96(11): 3280-3293, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26290332

RESUMO

Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50-59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF.


Assuntos
Vírus Bluetongue/genética , Bluetongue/virologia , Genoma Viral , Fases de Leitura Aberta , Proteínas Virais/genética , Animais , Vírus Bluetongue/classificação , Vírus Bluetongue/metabolismo , Linhagem Celular , Camundongos , Filogenia , Proteínas Virais/metabolismo
11.
Vet Immunol Immunopathol ; 151(3-4): 303-14, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23273932

RESUMO

Bovine neonatal pancytopenia (BNP) is a recently described haemorrhagic disease of calves characterised by thrombocytopenia, leucopenia and bone marrow depletion. Feeding colostrum from cows that have previously produced a BNP affected calf has been shown to induce the disease in some calves, leading to the hypothesis that alloantibodies in colostrum from dams of affected calves mediate destruction of blood and bone marrow cells in the recipient calves. The aims of the current experimental study were first to confirm the role of colostrum-derived antibody in mediating the disease and second to investigate the haematopoietic cell lineages and maturation stages depleted by the causative antibodies. Clinical, haematological and pathological changes were examined in 5 calves given a standardised pool of colostrum from known BNP dams, and 5 control calves given an equivalent pool of colostrum from non-BNP dams. All calves fed challenge colostrum showed progressive depletion of bone marrow haematopoietic cells and haematological changes consistent with the development of BNP. Administration of a standardised dose of the same colostrum pool to each calf resulted in a consistent response within the groups, allowing detailed interpretation of the cellular changes not previously described. Analyses of blood and serial bone marrow changes revealed evidence of differential effects on different blood cell lineages. Peripheral blood cell depletion was confined to leucocytes and platelets, while bone marrow damage occurred to the primitive precursors and lineage committed cells of the thrombocyte, lymphocyte and monocyte lineages, but only to the more primitive precursors in the neutrophil, erythrocyte and eosinophil lineages. Such differences between lineages may reflect cell type-dependent differences in levels of expression or conformational nature of the target antigens.


Assuntos
Doenças dos Bovinos/imunologia , Colostro/imunologia , Isoanticorpos/administração & dosagem , Isoanticorpos/efeitos adversos , Pancitopenia/veterinária , Animais , Animais Recém-Nascidos , Células Sanguíneas/imunologia , Células Sanguíneas/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/patologia , Linhagem da Célula/imunologia , Feminino , Genes MHC da Classe II , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Modelos Imunológicos , Pancitopenia/imunologia , Pancitopenia/patologia , Gravidez
12.
BMC Res Notes ; 5: 599, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110710

RESUMO

BACKGROUND: Bovine neonatal pancytopenia (BNP) is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD) vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows ("BNP dams"). Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and ß-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC) cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. RESULTS: Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell) colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid) colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage) was markedly reduced. CONCLUSION: This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.


Assuntos
Células-Tronco Hematopoéticas/patologia , Pancitopenia/patologia , Células-Tronco Pluripotentes/patologia , Trombocitopenia/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Biópsia , Bovinos , Proliferação de Células , Forma Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Colostro/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Masculino , Pancitopenia/imunologia , Pancitopenia/metabolismo , Projetos Piloto , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/metabolismo , Gravidez , Síndrome , Trombocitopenia/imunologia , Trombocitopenia/metabolismo , Fatores de Tempo , Vacinação , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...