Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183057

RESUMO

BACKGROUND: Excessive lipid accumulation in the adipose tissue in obesity alters the endocrine and energy storage functions of adipocytes. Adipocyte lipid droplets represent key organelles coordinating lipid storage and mobilization in these cells. Recently, we identified the small GTPase, Rab34, in the lipid droplet proteome of adipocytes. Herein, we have characterized the distribution, intracellular transport, and potential contribution of this GTPase to adipocyte physiology and its regulation in obesity. METHODS: 3T3-L1 and human primary preadipocytes were differentiated in vitro and Rab34 distribution and trafficking were analyzed using markers of cellular compartments. 3T3-L1 adipocytes were transfected with expression vectors and/or Rab34 siRNA and assessed for secretory activity, lipid accumulation and expression of proteins regulating lipid metabolism. Proteomic and protein interaction analyses were employed for the identification of the Rab34 interactome. These studies were combined with functional analysis to unveil the role played by the GTPase in adipocytes, with a focus on the actions conveyed by Rab34 interacting proteins. Finally, Rab34 regulation in response to obesity was also evaluated. RESULTS: Our results show that Rab34 localizes at the Golgi apparatus in preadipocytes. During lipid droplet biogenesis, Rab34 translocates from the Golgi to endoplasmic reticulum-related compartments and then reaches the surface of adipocyte lipid droplets. Rab34 exerts distinct functions related to its intracellular location. Thus, at the Golgi, Rab34 regulates cisternae integrity as well as adiponectin trafficking and oligomerization. At the lipid droplets, this GTPase controls lipid accumulation and lipolysis through its interaction with the E1-ubiquitin ligase, UBA1, which induces the ubiquitination and proteasomal degradation of the fatty acid transporter and member of Rab34 interactome, FABP5. Finally, Rab34 levels in the adipose tissue and adipocytes are regulated in response to obesity and related pathogenic insults (i.e., fibrosis). CONCLUSIONS: Rab34 plays relevant roles during adipocyte differentiation, including from the regulation of the oligomerization (i.e., biological activity) and secretion of a major adipokine with insulin-sensitizing actions, adiponectin, to lipid storage and mobilization from lipid droplets. Rab34 dysregulation in obesity may contribute to the altered adipokine secretion and lipid metabolism that characterize adipocyte dysfunction in conditions of excess adiposity.


Assuntos
Adiponectina , Proteômica , Humanos , Adipócitos , Adipocinas , GTP Fosfo-Hidrolases , Obesidade , Lipídeos , Proteínas de Ligação a Ácido Graxo
2.
Front Endocrinol (Lausanne) ; 14: 1243906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867510

RESUMO

Background: Obesity (OB) is a chronic metabolic disease with important associated comorbidities and mortality. Vitamin D supplementation is frequently administered after bariatric surgery (BS), so as to reduce OB-related complications, maybe including chronic inflammation. Aim: This study aimed to explore relations between vitamin D metabolites and components of the inflammasome machinery in OB before and after BS and their relations with the improvement of metabolic comorbidities. Patients and methods: Epidemiological/clinical/anthropometric/biochemical evaluation was performed in patients with OB at baseline and 6 months after BS. Evaluation of i) vitamin-D metabolites in plasma and ii) components of the inflammasome machinery and inflammatory-associated factors [NOD-like-receptors (NLRs), inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators] in peripheral blood mononuclear cells (PBMCs) was performed at baseline and 6 months after BS. Clinical and molecular correlations/associations were analyzed. Results: Significant correlations between vitamin D metabolites and inflammasome-machinery components were observed at baseline, and these correlations were significantly reduced 6 months after BS in parallel to a decrease in inflammation markers, fat mass, and body weight. Treatment with calcifediol remarkably increased 25OHD levels, despite 24,25(OH)2D3 remained stable after BS. Several inflammasome-machinery components were associated with improvement in metabolic comorbidities, especially hypertension and dyslipidemia. Conclusion: The beneficial effects of vitamin D on OB-related comorbidities after BS patients are associated with significant changes in the molecular expression of key inflammasome-machinery components. The expression profile of these inflammasome components can be dynamically modulated in PBMCs after BS and vitamin D supplementation, suggesting that this profile could likely serve as a sensor and early predictor of the reversal of OB-related complications after BS.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Calcifediol , Inflamassomos , Leucócitos Mononucleares , Obesidade/complicações , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Vitamina D , Inflamação
3.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551793

RESUMO

BACKGROUND: Obesity is characterized by adipose tissue dysregulation and predisposes individuals to insulin resistance and type 2 diabetes. At the molecular level, adipocyte dysfunction has been linked to obesity-triggered oxidative stress and protein carbonylation, considering protein carbonylation as a link between oxidative stress and metabolic dysfunction. The identification of specific carbonylated proteins in adipose tissue could provide novel biomarkers of oxidative damage related to metabolic status (i.e prediabetes). Thus, we aimed at characterizing the subcutaneous and omental human adipose tissue carbonylome in obesity-associated insulin resistance. METHODS: 2D-PAGE was used to identify carbonylated proteins, and clinical correlations studies and molecular biology approaches including intracellular trafficking, reactive oxygen species assay, and iron content were performed using in vitro models of insulin resistance. RESULTS: The carbonylome of human adipose tissue included common (serotransferrin, vimentin, actin, and annexin A2) and depot-specific (carbonic anhydrase and α-crystallin B in the subcutaneous depot; and α-1-antitrypsin and tubulin in the omental depot) differences that point out the complexity of oxidative stress at the metabolic level, highlighting changes in carbonylated transferrin expression. Posterior studies using in vitro prediabetic model evidence alteration in transferrin receptor translocation, linked to the prediabetic environment. Finally, ligand-receptor molecular docking studies showed a reduced affinity for carbonylated transferrin binding to its receptor compared to wild-type transferrin, emphasizing the role of transferrin carbonylation in the link between oxidative stress and metabolic dysfunction. CONCLUSIONS: The adipose tissue carbonylome contributes to understanding the molecular mechanism driving adipocyte dysfunction and identifies possible adipose tissue carbonylated targets in obesity-associated insulin resistance.

4.
Elife ; 102021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545810

RESUMO

Preadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D). We report that down-regulation of a key member of the major spliceosome, PRFP8/PRP8, as observed in IR/T2D preadipocytes from subcutaneous (SC) fat, prevented adipogenesis by altering both the expression and splicing patterns of adipogenic transcription factors and lipid droplet-related proteins, while adipocyte differentiation was restored upon recovery of PRFP8/PRP8 normal levels. Adipocyte differentiation was also compromised under conditions of endoplasmic reticulum (ER)-associated protein degradation (ERAD) hyperactivation, as occurs in SC and omental (OM) preadipocytes in IR/T2D obesity. Thus, targeting mRNA splicing and ER proteostasis in preadipocytes could improve adipose tissue function and thus contribute to metabolic health in obese individuals.


Assuntos
Adipócitos/fisiologia , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Proteostase , RNA Mensageiro/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Adulto , Diferenciação Celular , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo
5.
J Clin Endocrinol Metab ; 106(12): e4917-e4934, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34363480

RESUMO

BACKGROUND: Obesity is a metabolic chronic disease with important associated morbidities and mortality. Bariatric surgery is the most effective treatment for maintaining long-term weight loss in severe obesity and, consequently, for decreasing obesity-related complications, including chronic inflammation. AIM: To explore changes in components of the inflammasome machinery after bariatric surgery and their relation with clinical/biochemical parameters at baseline and 6 months after bariatric surgery. PATIENTS AND METHODS: Twenty-two patients with morbid-obesity that underwent bariatric surgery (sleeve gastrectomy and Roux-en-Y gastric bypass) were included. Epidemiological/clinical/anthropometric/biochemical evaluation was performed at baseline and 6 months after bariatric surgery. Inflammasome components and inflammatory-associated factors [nucleotide-binding oligomerization domain-like receptors (NLRs), inflammasome activation components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators) were evaluated in peripheral blood mononuclear cells (PBMCs) at baseline and 6 months after bariatric surgery. Clinical molecular correlations/associations were analyzed. Functional parameters (lipid accumulation/viability/apoptosis) were analyzed in response to specific inflammasome components silencing in liver HepG2 cells). RESULTS: A profound dysregulation of inflammasome components after bariatric surgery was found, especially in NLRs and cell-cycle and DNA damage regulators. Several components were associated with baseline metabolic comorbidities including type 2 diabetes (C-C motif chemokine ligand 2/C-X-C motif chemokine receptor 1/sirtuin 1), hypertension (absent in melanoma 2/ASC/purinergic receptor P2X 7), and dyslipidemia [C-X-C motif chemokine ligand 3 (CXCL3)/NLR family pyrin domain containing (NLRP) 7) and displayed changes in their molecular profile 6 months after bariatric surgery. The gene expression fingerprint of certain factors NLR family CARD domain containing 4 (NLRC4)/NLRP12/CXCL3)/C-C motif chemokine ligand 8/toll-like receptor 4) accurately differentiated pre- and postoperative PBMCs. Most changes were independent of the performed surgical technique. Silencing of NLRC4/NLRP12 resulted in altered lipid accumulation, apoptosis rate, and cell viability in HepG2 cells. CONCLUSION: Bariatric surgery induces a profound alteration in the gene expression pattern of components of the inflammasome machinery in PBMCs. Expression and changes of certain inflammasome components are associated to baseline metabolic comorbidities, including type 2 diabetes, and may be related to the improvement and reversion of some obesity-related comorbidities after bariatric surgery.


Assuntos
Cirurgia Bariátrica/efeitos adversos , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/patologia , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Leucócitos Mononucleares/patologia , Obesidade Mórbida/cirurgia , Adulto , Biomarcadores/metabolismo , Doença Crônica , Estudos de Coortes , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Feminino , Seguimentos , Gastrectomia/efeitos adversos , Humanos , Inflamassomos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/patologia , Prognóstico
6.
FASEB J ; 34(6): 7520-7539, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293066

RESUMO

Adipose tissue dysregulation in obesity strongly influences systemic metabolic homeostasis and is often linked to insulin resistance (IR). However, the molecular mechanisms underlying adipose tissue dysfunction in obesity are not fully understood. Herein, a proteomic analysis of subcutaneous (SC) and omental (OM) fat from lean subjects and obese individuals with different degrees of insulin sensitivity was performed to identify adipose tissue biomarkers related to obesity-associated metabolic disease. Our results suggest that dysregulation of both adipose tissue extracellular matrix (ECM) organization and intracellular trafficking processes may be associated with IR in obesity. Thus, abnormal accumulation of the small leucine-rich proteoglycan, lumican, as observed in SC fat of IR obese individuals, modifies collagen I organization, impairs adipogenesis and activates stress processes [endoplasmic reticulum and oxidative stress] in adipocytes. In OM fat, IR is associated with increased levels of the negative regulator of the Rab family of small GTPases, GDI2, which alters lipid storage in adipocytes by inhibiting insulin-stimulated binding of the Rab protein, Rab18, to lipid droplets. Together, these results indicate that lumican and GDI2 might play depot-dependent, pathogenic roles in obesity-associated IR. Our findings provide novel insights into the differential maladaptive responses of SC and OM adipose tissue linking obesity to IR.


Assuntos
Tecido Adiposo/patologia , Matriz Extracelular/patologia , Resistência à Insulina/fisiologia , Obesidade/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Adulto , Sinais (Psicologia) , Matriz Extracelular/metabolismo , Feminino , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Humanos , Lumicana/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Proteômica/métodos , Gordura Subcutânea/metabolismo
7.
Antioxid Redox Signal ; 23(7): 597-612, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25714483

RESUMO

AIMS: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. RESULTS: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. INNOVATION: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. CONCLUSION: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.


Assuntos
Adipócitos/patologia , Resistência à Insulina , Obesidade Metabolicamente Benigna/fisiopatologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Obesidade Metabolicamente Benigna/metabolismo , Obesidade Metabolicamente Benigna/patologia , Omento/citologia , Omento/metabolismo , Omento/patologia , Ácido Palmítico/farmacologia , Proteômica/métodos , Gordura Subcutânea/metabolismo , Gordura Subcutânea/patologia , Resposta a Proteínas não Dobradas
8.
Obes Surg ; 17(4): 493-503, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17608262

RESUMO

BACKGROUND: Lipid accumulation and other histological liver markers characterize patients with non-alcoholic steatohepatitis (NASH). The identification of non-invasive prognostic factors of liver steatosis and NASH are relevant for the unravelling of the mechanisms of this disease, as well as for the clinical diagnoses of these patients. METHODS: 36 patients with morbid obesity and 12 healthy subjects were consecutively enrolled in this cross-sectional study to determine the serological parameters associated with the degree of hepatic steatosis and NASH. Clinical, biochemical and histologic variables were examined in blood and liver biopsies by descriptive, univariate and multivariate regression analysis. RESULTS: The patients were distributed as non-NASH (14), probably-NASH (13) and NASH (9), according to the Non-alcoholic fatty liver disease Activity Score (NAS). The study identified remarkable differences in liver steatosis, and glucose, insulin, IL-6 and IGF-1 concentrations in blood among patients with morbid obesity. IL-6 was correlated with the degree of liver steatosis until the morbidly obese patients fulfil the criteria of NASH. The patients with NASH reduced IL-6 concentration in blood. IGF-1 decreased throughout the progression of NASH. TNF-alpha concentration was not related to liver steatosis or NASH in morbidly obese patients. The multivariate regression analysis identified glucose >110 mg/dL, IL-6 >4.81 pg/mL and IGF-1 <130 ng/mL, and homeostasis model assessment (HOMA) >4.5 and IGF-1 <110 ng/mL as independent predictors of hepatic steatosis and NASH, respectively. CONCLUSIONS: The concentration of glucose, insulin, IL-6 and IGF-1 in blood are useful markers for the selection of patients with liver steatosis or NASH.


Assuntos
Fígado Gorduroso/epidemiologia , Hepatite/epidemiologia , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/sangue , Obesidade Mórbida/sangue , Fator de Necrose Tumoral alfa/sangue , Adulto , Estudos de Casos e Controles , Estudos Transversais , Fígado Gorduroso/patologia , Feminino , Hepatite/patologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/patologia , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...