Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
2.
J Neurosci ; 36(15): 4259-75, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076424

RESUMO

Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT: Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Axônios/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fatores de Crescimento Neural/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Pseudópodes/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptor trkA/fisiologia , Transdução de Sinais/genética
3.
Genom Data ; 6: 249-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697387

RESUMO

Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the "spared dermatome" model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact ("naïve") sensory ganglia. Data has been deposited into GEO (GSE72551).

4.
Artigo em Inglês | MEDLINE | ID: mdl-24926235

RESUMO

Work early in the last century emphasized the stereotyped activity of spinal circuits based on studies of reflexes. However, the last several decades have focused on the plasticity of these spinal circuits. These considerations began with studies of the effects of monoamines on descending and reflex circuits. In recent years new classes of compounds called growth factors that are found in peripheral nerves and the spinal cord have been shown to affect circuit behavior in the spinal cord. In this review we will focus on the effects of neurotrophins, particularly nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on spinal circuits. We also discuss evidence that these molecules can modify functions including nociceptive behavior, motor reflexes and stepping behavior. Since these substances and their receptors are normally present in the spinal cord, they could potentially be useful in improving function in disease states and after injury. Here we review recent findings relevant to these translational issues.


Assuntos
Atividade Motora/fisiologia , Fatores de Crescimento Neural/metabolismo , Rede Nervosa/metabolismo , Medula Espinal/metabolismo , Animais , Traumatismos da Medula Espinal/metabolismo
5.
Handb Exp Pharmacol ; 220: 443-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24668482

RESUMO

A major challenge in repairing the injured spinal cord is to assure survival of damaged cells and to encourage regrowth of severed axons. Because neurotrophins are known to affect these processes during development, many experimental approaches to improving function of the injured spinal cord have made use of these agents, particularly Brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3). More recently, neurotrophins have also been shown to affect the physiology of cells and synapses in the spinal cord. The effect of neurotrophins on circuit performance adds an important dimension to their consideration as agents for repairing the injured spinal cord. In this chapter we discuss the role of neurotrophins in promoting recovery after spinal cord injury from both a structural and functional perspective.


Assuntos
Fatores de Crescimento Neural/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/fisiologia , Sobrevivência Celular , Humanos , Recuperação de Função Fisiológica , Sinapses/fisiologia
6.
Pain ; 155(2): 210-216, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334188

RESUMO

The gate theory of pain, published by Ronald Melzack and Patrick Wall in Science in 1965, was formulated to provide a mechanism for coding the nociceptive component of cutaneous sensory input. The theory dealt explicitly with the apparent conflict in the 1960s between the paucity of sensory neurons that responded selectively to intense stimuli and the well-established finding that stimulation of the small fibers in peripheral nerves is required for the stimulus to be described as painful. It incorporated recently discovered mechanisms of presynaptic control of synaptic transmission from large and small sensory afferents, which was suggested to "gate" incoming information depending on the balance between these inputs. Other important features included the convergence of small and large sensory inputs on spinal neurons that transmitted the sensory information to the forebrain as well as the ability of descending control pathways to affect the biasing established by the gate. The clarity of the model and its description gave this article immediate visibility, with numerous attempts made to test its various predictions. Although subsequent experiments and clinical findings have made clear that the model is not correct in detail, the general ideas put forth in the article and the experiments they prompted in both animals and patients have transformed our understanding of pain mechanisms.


Assuntos
Dor/fisiopatologia , Filtro Sensorial/fisiologia , Animais , Gânglios Espinais/fisiologia , Humanos , Inibição Neural/fisiologia , Neurônios Aferentes/fisiologia , Dor/diagnóstico , Células do Corno Posterior/fisiologia , Terminações Pré-Sinápticas/fisiologia
7.
J Comp Neurol ; 522(5): 1048-71, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23983104

RESUMO

Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and allows the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci [rat] or cutaneus maximus [mouse]) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. Stimulation of some subcutaneous paraspinal tissue can also elicit this reflex. Using a selective neurotoxin, we also demonstrate differential drive of the CTMR by trkA-expressing and nonexpressing small-diameter afferents. These observations highlight aspects of the organization of the CTMR system that make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to demonstrate qualitatively and quantitatively that experimental pharmacological treatments can be compared with controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and a noninvasive quantitative assessment tool providing improved statistical power and reduced animal use.


Assuntos
Vias Aferentes/fisiologia , Músculo Esquelético/fisiologia , Plasticidade Neuronal/fisiologia , Nociceptividade/fisiologia , Reflexo/fisiologia , Pele/inervação , Analgésicos não Narcóticos/farmacologia , Animais , Bupivacaína/farmacologia , Dexmedetomidina/farmacologia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Músculo Esquelético/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Estimulação Física/efeitos adversos , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/metabolismo , Reflexo/efeitos dos fármacos , Somatostatina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ubiquitina Tiolesterase/metabolismo
8.
J Neurophysiol ; 110(4): 942-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23741041

RESUMO

We made simultaneous bilateral recordings of unit activity in the nucleus ventroposterior lateralis (VPL) in intact rats and after acute and chronic left thoracic hemisection. We observed an immediate bilateral decline in multireceptive units, reflecting a loss of nociceptive input on the lesion side and a loss of low-threshold inputs contralaterally. Unit properties were restored to normal by 6 wk. Mean spontaneous discharge frequency remained unchanged in left VPL at all intervals. Right VPL displayed a substantial increase in spontaneous discharge frequency at 2 and 4 wk, returning to normal by 6 wk. Activity in left VPL driven by Pinch or Brush of the right limb was unchanged except for an immediate decrease in the response to Pinch, which was reversed by 2 wk despite persistent left hemisection. In right VPL, the response to Pinch or Brush of the left hindlimb was enhanced at 2 and 4 wk but returned to normal by 6 wk. Behaviorally, the same rats displayed increased sensitivity to mechanical stimulation of the left hindlimb, but, unlike VPL activity, there was no significant behavioral recovery. Bursting cells were also observed bilaterally in VPL, but this did not match the restriction of scratches to the hindlimb contralateral to the hemisection considered to be evidence for neuropathic pain. The novel findings include recovery of responsiveness to Pinch on the side ipsilateral to the hemisection despite the lack of spinothalamic input as well as failure for the thalamus contralateral to hemisection to maintain its elevated responsiveness.


Assuntos
Nociceptores/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Núcleos Ventrais do Tálamo/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Vértebras Torácicas
9.
Eur J Neurosci ; 35(2): 221-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22211901

RESUMO

We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV-BDNF was significantly more effective than AAV-NT-3 in eliciting locomotion. In fact, AAV-BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV-NT-3 or AAV-GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV-NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV-BDNF-treated rats were sensitized to noxious heat, whereas AAV-NT-3-treated and AAV-GFP-treated rats were not. Notably, AAV-BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV-BDNF significantly reduced motoneuron rheobase, suggesting that AAV-BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV-BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV-NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Terapia Genética/métodos , Neurotrofina 3/administração & dosagem , Paraplegia/terapia , Traumatismos da Medula Espinal/terapia , Adenoviridae/genética , Animais , Axotomia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Vetores Genéticos , Membro Posterior , Humanos , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurotrofina 3/genética , Paraplegia/patologia , Paraplegia/fisiopatologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
10.
J Neurosci ; 31(49): 17788-99, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159095

RESUMO

Elevating spinal levels of neurotrophin NT-3 (NT3) while increasing expression of the NR2D subunit of the NMDA receptor using a HSV viral construct promotes formation of novel multisynaptic projections from lateral white matter (LWM) axons to motoneurons in neonates. However, this treatment is ineffective after postnatal day 10. Because chondroitinase ABC (ChABC) treatment restores plasticity in the adult CNS, we have added ChABC to this treatment and applied the combination to adult rats receiving a left lateral hemisection (Hx) at T8. All hemisected animals initially dragged the ipsilateral hindpaw and displayed abnormal gait. Rats treated with ChABC or NT3/HSV-NR2D recovered partial hindlimb locomotor function, but animals receiving combined therapy displayed the most improved body stability and interlimb coordination [Basso-Beattie-Bresnahan (BBB) locomotor scale and gait analysis]. Electrical stimulation of the left LWM at T6 did not evoke any synaptic response in ipsilateral L5 motoneurons of control hemisected animals, indicating interruption of the white matter. Only animals with the full combination treatment recovered consistent multisynaptic responses in these motoneurons indicating formation of a detour pathway around the Hx. These physiological findings were supported by the observation of increased branching of both cut and intact LWM axons into the gray matter near the injury. ChABC-treated animals displayed more sprouting than control animals and those receiving NT3/HSV-NR2D; animals receiving the combination of all three treatments showed the most sprouting. Our results indicate that therapies aimed at increasing plasticity, promoting axon growth and modulating synaptic function have synergistic effects and promote better functional recovery than if applied individually.


Assuntos
Axônios/metabolismo , Condroitina ABC Liase/metabolismo , Plasticidade Neuronal/fisiologia , Neurotrofina 3/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Axônios/patologia , Biotina/análogos & derivados , Biotina/metabolismo , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Dextranos/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Hiperalgesia/fisiopatologia , Locomoção/fisiologia , Ratos , Ratos Sprague-Dawley , Transfecção , beta-Galactosidase/metabolismo
11.
Eur J Neurosci ; 34(8): 1256-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21995852

RESUMO

To encourage re-establishment of functional innervation of ipsilateral lumbar motoneurons by descending fibers after an intervening lateral thoracic (T10) hemisection (Hx), we treated adult rats with the following agents: (i) anti-Nogo-A antibodies to neutralize the growth-inhibitor Nogo-A; (ii) neurotrophin-3 (NT-3) via engineered fibroblasts to promote neuron survival and plasticity; and (iii) the NMDA-receptor 2d (NR2d) subunit via an HSV-1 amplicon vector to elevate NMDA receptor function by reversing the Mg(2+) block, thereby enhancing synaptic plasticity and promoting the effects of NT-3. Synaptic responses evoked by stimulation of the ventrolateral funiculus ipsilateral and rostral to the Hx were recorded intracellularly from ipsilateral lumbar motoneurons. In uninjured adult rats short-latency (1.7-ms) monosynaptic responses were observed. After Hx these monosynaptic responses were abolished. In the Nogo-Ab + NT-3 + NR2d group, long-latency (approximately 10 ms), probably polysynaptic, responses were recorded and these were not abolished by re-transection of the spinal cord through the Hx area. This suggests that these novel responses resulted from new connections established around the Hx. Anterograde anatomical tracing from the cervical grey matter ipsilateral to the Hx revealed increased numbers of axons re-crossing the midline below the lesion in the Nogo-Ab + NT-3 + NR2d group. The combined treatment resulted in slightly better motor function in the absence of adverse effects (e.g. pain). Together, these results suggest that the combination treatment with Nogo-Ab + NT-3 + NR2d can produce a functional 'detour' around the lesion in a laterally hemisected spinal cord. This novel combination treatment may help to improve function of the damaged spinal cord.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Proteínas da Mielina/imunologia , Neurotrofina 3/farmacologia , Subunidades Proteicas/farmacologia , Receptores de N-Metil-D-Aspartato/uso terapêutico , Traumatismos da Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Feminino , Humanos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Neurotrofina 3/uso terapêutico , Proteínas Nogo , Subunidades Proteicas/uso terapêutico , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia
12.
Anesthesiology ; 115(1): 189-204, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602663

RESUMO

Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.


Assuntos
Analgésicos/farmacologia , Analgésicos/uso terapêutico , Fatores de Crescimento Neural/antagonistas & inibidores , Dor/tratamento farmacológico , Receptor trkA/antagonistas & inibidores , Adulto , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Modelos Animais de Doenças , Humanos , Fatores de Crescimento Neural/fisiologia , Neuroma/patologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Receptor trkA/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 108 Suppl 3: 15596-601, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21368123

RESUMO

The basic circuitry of the "pain pathway" mediating transmission of information from the periphery to the brain is well known, consisting of specialized sensory fibers known as nociceptors projecting to specific spinal cord neurons, which in turn project on to the thalamus and cerebral cortex. Here we survey some of the unique properties of these circuits, such as peripheral and central sensitization, and the segmental and descending modulatory control of synaptic transmission. We also review evidence indicating dissociation between nociceptor activity and behavioral indications of pain. Together, these considerations point to the need for a more quantitative approach to the nociceptive system, specifically the interactions at peripheral, spinal, and supraspinal levels as well as between them, to more fully understand how the activity in nociceptive neurons individually and collectively is related to the pain response.


Assuntos
Comportamento/fisiologia , Simulação por Computador , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Dor/patologia , Dor/fisiopatologia , Transdução de Sinais , Animais , Humanos
14.
Eur J Neurosci ; 32(6): 997-1005, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20849530

RESUMO

We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed, indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long-lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury.


Assuntos
Dependovirus/fisiologia , Sistemas de Liberação de Medicamentos , Neurônios Motores/fisiologia , Neurotrofina 3/administração & dosagem , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intramusculares , Ratos , Ratos Sprague-Dawley
15.
J Pain ; 11(11): 1066-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20627820

RESUMO

UNLABELLED: Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE: Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.


Assuntos
Axônios/metabolismo , Axônios/patologia , Regulação da Expressão Gênica , Regeneração Nervosa/genética , Células Receptoras Sensoriais/metabolismo , Pele/lesões , Medula Espinal/cirurgia , Animais , Procedimentos Cirúrgicos Dermatológicos , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Transcrição Gênica
16.
J Neurosci ; 30(23): 7761-9, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534825

RESUMO

Chronic unilateral hemisection (HX) of the adult rat spinal cord diminishes conduction through intact fibers in the ventrolateral funiculus (VLF) contralateral to HX. This is associated with a partial loss of myelination from fibers in the VLF (Arvanian et al., 2009). Here, we again measured conduction through the VLF using electrical stimulation while recording the resulting volley and synaptic potentials in target motoneurons. We found that intraspinal injection of chondroitinase-ABC, known to digest chondroitin sulfate proteoglycans (CSPGs), prevented the decline of axonal conduction through intact VLF fibers across from chronic T10 HX. Chondroitinase treatment was also associated with behavior suggestive of an improvement of locomotor function after chronic HX. To further study the role of CSPGs in axonal conduction, we injected three purified CSPGs, NG2 and neurocan, which increase in the vicinity of a spinal injury, and aggrecan, which decreases, into the lateral column of the uninjured cord at T10 in separate experiments. Intraspinal injection of NG2 acutely depressed axonal conduction through the injected region in a dose-dependent manner. Similar injections of saline, aggrecan, or neurocan had no significant effect. Immunofluorescence staining experiments revealed the presence of endogenous and exogenous NG2 at some nodes of Ranvier. These results identify a novel acute action of CSPGs on axonal conduction in the spinal cord and suggest that antagonism of proteoglycans reverses or prevents the decline of axonal conduction, in addition to stimulating axonal growth.


Assuntos
Axônios/efeitos dos fármacos , Condroitina ABC Liase/farmacologia , Proteoglicanas de Sulfatos de Condroitina/antagonistas & inibidores , Neurônios Motores/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Agrecanas/administração & dosagem , Agrecanas/farmacologia , Animais , Antígenos/administração & dosagem , Antígenos/farmacologia , Axônios/patologia , Condroitina ABC Liase/administração & dosagem , Proteoglicanas de Sulfatos de Condroitina/administração & dosagem , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Feminino , Imunofluorescência , Lateralidade Funcional , Injeções Espinhais , Atividade Motora/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurocam , Proteoglicanas/administração & dosagem , Proteoglicanas/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico
17.
Eur J Neurosci ; 29(11): 2125-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490018

RESUMO

Lumbar motoneurons can be activated monosynaptically by two glutamatergic synaptic inputs: the segmental dorsal root (DR) and the descending ventrolateral funiculus (VLF). To determine whether their N-methyl-d-aspartate (NMDA) receptors are independent, we used (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK-801), known to induce a use-dependent irreversible block of NMDA receptors (NMDARs). In the presence of MK-801 (in bath) and non-NMDA antagonists (in bath, to isolate NMDARs pharmacologically), we first stimulated the DR. After MK-801 blockade of DR synaptic input, the VLF was stimulated. Its response was found to be not significantly different from its control value, suggesting that the DR stimulus activated very few, if any, receptors also activated by VLF stimulation. Similar findings were obtained if the stimulation order was reversed. Both inputs also elicited a polysynaptic NMDAR-mediated response. Evoking the DR polysynaptic response in the presence of MK-801 eliminated the corresponding VLF response; the reverse did not occur. Surprisingly, when MK-801 was washed from the bath, both the DR and the VLF responses could recover, although the recovery of the DR monosynaptic and polysynaptic responses was reliably greater than those associated with the VLF. Recovery was prevented if extrasynaptic receptors were activated by bath-applied NMDA in the presence of MK-801, consistent with the possibility that recovery was due to movement of extrasynaptic receptors into parts of the membrane accessible to transmitter released by DR and VLF stimulation. These novel findings suggest that segmental glutamatergic inputs to motoneurons are more susceptible to plastic changes than those from central nervous system white matter inputs at this developmental stage.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Maleato de Dizocilpina/farmacologia , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Exp Neurol ; 216(2): 471-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19320005

RESUMO

Although most spinal cord injuries are anatomically incomplete, only limited functional recovery has been observed in people and rats with partial lesions. To address why surviving fibers cannot mediate more complete recovery, we evaluated the physiological and anatomical status of spared fibers after unilateral hemisection (HX) of thoracic spinal cord in adult rats. We made intracellular and extracellular recordings at L5 (below HX) in response to electrical stimulation of contralateral white matter above (T6) and below (L1) HX. Responses from T6 displayed reduced amplitude, increased latency and elevated stimulus threshold in the fibers across from HX, beginning 1-2 weeks after HX. Ultrastructural analysis revealed demyelination of intact axons contralateral to the HX, with a time course similar to the conduction changes. Behavioral studies indicated partial recovery which arrested when conduction deficits began. In conclusion, this study is the first demonstration of the delayed decline of transmission through surviving axons to individual lumbar motoneurons during chronic stage of incomplete spinal cord injury in adult rats. These findings suggest a chronic pathological state in intact fibers and necessity for prompt treatment to minimize it.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Lateralidade Funcional/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Biofísica , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Estimulação Elétrica , Potenciais Evocados/fisiologia , Feminino , Atividade Motora , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Condução Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia
19.
Exp Neurol ; 206(2): 257-68, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17585905

RESUMO

Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well-established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with the infusion of antibodies that neutralize the growth inhibitory effects of the NG2 chondroitin sulfate proteoglycan promotes sensory axon growth through the glial scar and into the white matter of the dorsal columns. The physiological properties of these regenerated axons, particularly in the chronic SCI phase, have not been established. Here we examined the functional status of regenerated sensory afferents in the dorsal columns after SCI. Six months post-injury, we located and electrically mapped functional sensory axons that had regenerated beyond the injury site. The regenerated axons had reduced conduction velocity, decreased frequency-following ability, and increasing latency to repetitive stimuli. Many of the axons that had regenerated into the dorsal columns rostral to the injury site were chronically demyelinated. These results demonstrate that regenerated sensory axons remain in a chronic pathophysiological state and emphasize the need to restore normal conduction properties to regenerated axons after spinal cord injury.


Assuntos
Vias Aferentes/fisiopatologia , Axônios/patologia , Regeneração Nervosa , Neurônios Aferentes , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Vias Aferentes/patologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Antígenos/imunologia , Cicatriz/tratamento farmacológico , Cicatriz/imunologia , Cicatriz/prevenção & controle , Estimulação Elétrica , Gliose/tratamento farmacológico , Gliose/imunologia , Gliose/prevenção & controle , Inibidores do Crescimento/antagonistas & inibidores , Inibidores do Crescimento/imunologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/imunologia , Fibras Nervosas Mielinizadas/patologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Neurônios Aferentes/patologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/imunologia , Nervos Periféricos/fisiopatologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/imunologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Traumatismos da Medula Espinal/patologia
20.
J Neurosci ; 27(16): 4460-71, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442831

RESUMO

Although recovery from spinal cord injury is generally meager, evidence suggests that step training can improve stepping performance, particularly after neonatal spinal injury. The location and nature of the changes in neural substrates underlying the behavioral improvements are not well understood. We examined the kinematics of stepping performance and cellular and synaptic electrophysiological parameters in ankle extensor motoneurons in nontrained and treadmill-trained rats, all receiving a complete spinal transection as neonates. For comparison, electrophysiological experiments included animals injured as young adults, which are far less responsive to training. Recovery of treadmill stepping was associated with significant changes in the cellular properties of motoneurons and their synaptic input from spinal white matter [ipsilateral ventrolateral funiculus (VLF)] and muscle spindle afferents. A strong correlation was found between the effectiveness of step training and the amplitude of both the action potential afterhyperpolarization and synaptic inputs to motoneurons (from peripheral nerve and VLF). These changes were absent if step training was unsuccessful, but other spinal projections, apparently inhibitory to step training, became evident. Greater plasticity of axonal projections after neonatal than after adult injury was suggested by anatomical demonstration of denser VLF projections to hindlimb motoneurons after neonatal injury. This finding confirmed electrophysiological measurements and provides a possible mechanism underlying the greater training susceptibility of animals injured as neonates. Thus, we have demonstrated an "age-at-injury"-related difference that may influence training effectiveness, that successful treadmill step training can alter electrophysiological parameters in the transected spinal cord, and that activation of different pathways may prevent functional improvement.


Assuntos
Atividade Motora , Neurônios Motores , Plasticidade Neuronal , Traumatismos da Medula Espinal/fisiopatologia , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Vértebras Torácicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...