Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(1-1): 014301, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797879

RESUMO

The nonbacktracking matrix and the related nonbacktracking centrality (NBC) play a crucial role in models of percolation-type processes on networks, such as nonrecurrent epidemics. Here we study the localization of NBC in infinite sparse networks that contain an arbitrary finite subgraph. Assuming the local tree likeness of the enclosing network, and that branches emanating from the finite subgraph do not intersect at finite distances, we show that the largest eigenvalue of the nonbacktracking matrix of the composite network is equal to the highest of the two largest eigenvalues: that of the finite subgraph and of the enclosing network. In the localized state, when the largest eigenvalue of the subgraph is the highest of the two, we derive explicit expressions for the NBCs of nodes in the subgraph and other nodes in the network. In this state, nonbacktracking centrality is concentrated on the subgraph and its immediate neighborhood in the enclosing network. We obtain simple, exact formulas in the case where the enclosing network is uncorrelated. We find that the mean NBC decays exponentially around the finite subgraph, at a rate which is independent of the structure of the enclosing network, contrary to what was found for the localization of the principal eigenvector of the adjacency matrix. Numerical simulations confirm that our results provide good approximations even in moderately sized, loopy, real-world networks.

2.
Phys Rev Lett ; 129(20): 208002, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462001

RESUMO

We study a model of nonidentical swarmalators, generalizations of phase oscillators that both sync in time and swarm in space. The model produces four collective states: asynchrony, sync clusters, vortexlike phase waves, and a mixed state. These states occur in many real-world swarmalator systems such as biological microswimmers, chemical nanomotors, and groups of drones. A generalized Ott-Antonsen ansatz provides the first analytic description of these states and conditions for their existence. We show how this approach may be used in studies of active matter and related disciplines.


Assuntos
Dispositivos Aéreos não Tripulados
3.
Sci Rep ; 12(1): 3973, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273259

RESUMO

Weak multiplex percolation generalizes percolation to multi-layer networks, represented as networks with a common set of nodes linked by multiple types (colors) of edges. We report a novel discontinuous phase transition in this problem. This anomalous transition occurs in networks of three or more layers without unconnected nodes, [Formula: see text]. Above a critical value of a control parameter, the removal of a tiny fraction [Formula: see text] of nodes or edges triggers a failure cascade which ends either with the total collapse of the network, or a return to stability with the system essentially intact. The discontinuity is not accompanied by any singularity of the giant component, in contrast to the discontinuous hybrid transition which usually appears in such problems. The control parameter is the fraction of nodes in each layer with a single connection, [Formula: see text]. We obtain asymptotic expressions for the collapse time and relaxation time, above and below the critical point [Formula: see text], respectively. In the limit [Formula: see text] the total collapse for [Formula: see text] takes a time [Formula: see text], while there is an exponential relaxation below [Formula: see text] with a relaxation time [Formula: see text].

4.
Phys Rev E ; 104(5-1): 054306, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942755

RESUMO

Message-passing theories have proved to be invaluable tools in studying percolation, nonrecurrent epidemics, and similar dynamical processes on real-world networks. At the heart of the message-passing method is the nonbacktracking matrix, whose largest eigenvalue, the corresponding eigenvector, and the closely related nonbacktracking centrality play a central role in determining how the given dynamical model behaves. Here we propose a degree-class-based method to approximate these quantities using a smaller matrix related to the joint degree-degree distribution of neighboring nodes. Our findings suggest that in most networks, degree-degree correlations beyond nearest neighbor are actually not strong, and our first-order description already results in accurate estimates, particularly when message-passing itself is a good approximation to the original model in question, that is, when the number of short cycles in the network is sufficiently low. We show that localization of the nonbacktracking centrality is also captured well by our scheme, particularly in large networks. Our method provides an alternative to working with the full nonbacktracking matrix in very large networks where this may not be possible due to memory limitations.

5.
Chaos Solitons Fractals ; 152: 111359, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34483500

RESUMO

We introduce a compartmental model SEIAHRV (Susceptible, Exposed, Infected, Asymptomatic, Hospitalized, Recovered, Vaccinated) with age structure for the spread of the SARAS-CoV virus. In order to model current different vaccines we use compartments for individuals vaccinated with one and two doses without vaccine failure and a compartment for vaccinated individual with vaccine failure. The model allows to consider any number of different vaccines with different efficacies and delays between doses. Contacts among age groups are modeled by a contact matrix and the contagion matrix is obtained from a probability of contagion p c per contact. The model uses known epidemiological parameters and the time dependent probability p c is obtained by fitting the model output to the series of deaths in each locality, and reflects non-pharmaceutical interventions. As a benchmark the output of the model is compared to two good quality serological surveys, and applied to study the evolution of the COVID-19 pandemic in the main Brazilian cities with a total population of more than one million. We also discuss with some detail the case of the city of Manaus which raised special attention due to a previous report of We also estimate the attack rate, the total proportion of cases (symptomatic and asymptomatic) with respect to the total population, for all Brazilian states since the beginning of the COVID-19 pandemic. We argue that the model present here is relevant to assessing present policies not only in Brazil but also in any place where good serological surveys are not available.

6.
Phys Rev E ; 104(2-1): 024313, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525638

RESUMO

We studied the impact of field heterogeneity on entrainment in a system of uniformly interacting phase oscillators. Field heterogeneity is shown to induce dynamical heterogeneity in the system. In effect, the heterogeneous field partitions the system into interacting groups of oscillators that feel the same local field strength and phase. Based on numerical and analytical analysis of the explicit dynamical equations derived from the periodically forced Kuramoto model, we found that the heterogeneous field can disrupt entrainment at different field frequencies when compared to the homogeneous field. This transition occurs when the phase- and frequency-locked synchronization between groups of oscillators is broken at a critical field frequency, causing each group to enter a new dynamical state (disrupted state). Strikingly, it is shown that disrupted dynamics can differ between groups.

7.
Phys Rev E ; 103(2-1): 022321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736025

RESUMO

Dependency links in single-layer networks offer a convenient way of modeling nonlocal percolation effects in networked systems where certain pairs of nodes are only able to function together. We study the percolation properties of the weak variant of this model: Nodes with dependency neighbors may continue to function if at least one of their dependency neighbors is active. We show that this relaxation of the dependency rule allows for more robust structures and a rich variety of critical phenomena, as percolation is not determined strictly by finite dependency clusters. We study Erdos-Rényi and random scale-free networks with an underlying Erdos-Rényi network of dependency links. We identify a special "cusp" point above which the system is always stable, irrespective of the density of dependency links. We find continuous and discontinuous hybrid percolation transitions, separated by a tricritical point for Erdos-Rényi networks. For scale-free networks with a finite degree cutoff we observe the appearance of a critical point and corresponding double transitions in a certain range of the degree distribution exponent. We show that at a special point in the parameter space, where the critical point emerges, the giant viable cluster has the unusual critical singularity S-S_{c}∝(p-p_{c})^{1/4}. We study the robustness of networks where connectivity degrees and dependency degrees are correlated and find that scale-free networks are able to retain their high resilience for strong enough positive correlation, i.e., when hubs are protected by greater redundancy.

8.
Entropy (Basel) ; 22(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33286918

RESUMO

Compression, filtering, and cryptography, as well as the sampling of complex systems, can be seen as processing information. A large initial configuration or input space is nontrivially mapped to a smaller set of output or final states. We explored the statistics of filtering of simple patterns on a number of deterministic and random graphs as a tractable example of such information processing in complex systems. In this problem, multiple inputs map to the same output, and the statistics of filtering is represented by the distribution of this degeneracy. For a few simple filter patterns on a ring, we obtained an exact solution of the problem and numerically described more difficult filter setups. For each of the filter patterns and networks, we found three key numbers that essentially describe the statistics of filtering and compared them for different networks. Our results for networks with diverse architectures are essentially determined by two factors: whether the graphs structure is deterministic or random and the vertex degree. We find that filtering in random graphs produces much richer statistics than in deterministic graphs, reflecting the greater complexity of such graphs. Increasing the graph's degree reduces this statistical richness, while being at its maximum at the smallest degree not equal to two. A filter pattern with a strong dependence on the neighbourhood of a node is much more sensitive to these effects.

9.
Phys Rev E ; 102(3-1): 032304, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075984

RESUMO

The structure of an evolving network contains information about its past. Extracting this information efficiently, however, is, in general, a difficult challenge. We formulate a fast and efficient method to estimate the most likely history of growing trees, based on exact results on root finding. We show that our linear-time algorithm produces the exact stepwise most probable history in a broad class of tree growth models. Our formulation is able to treat very large trees and therefore allows us to make reliable numerical observations regarding the possibility of root inference and history reconstruction in growing trees. We obtain the general formula 〈lnN〉≅NlnN-cN for the size dependence of the mean logarithmic number of possible histories of a given tree, a quantity that largely determines the reconstructability of tree histories. We also reveal an uncertainty principle: a relationship between the inferability of the root and that of the complete history, indicating that there is a tradeoff between the two tasks; the root and the complete history cannot both be inferred with high accuracy at the same time.

10.
Phys Rev E ; 102(3-1): 032301, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33076014

RESUMO

We describe the critical behavior of weak multiplex percolation, a generalization of percolation to multiplex or interdependent networks. A node can determine its active or inactive status simply by referencing neighboring nodes. This is not the case for the more commonly studied generalization of percolation to multiplex networks, the mutually connected clusters, which requires an interconnecting path within each layer between any two vertices in the giant mutually connected component. We study the emergence of a giant connected component of active nodes under the weak percolation rule, finding several nontypical phenomena. In two layers, the giant component emerges with a continuous phase transition, but with quadratic growth above the critical threshold. In three or more layers, a discontinuous hybrid transition occurs, similar to that found in the giant mutually connected component. In networks with asymptotically powerlaw degree distributions, defined by the decay exponent γ, the discontinuity vanishes but at γ=1.5 in three layers, more generally at γ=1+1/(M-1) in M layers.

11.
Phys Rev E ; 97(4-1): 042311, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758737

RESUMO

We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k-cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k-core organization and so-called "corona" clusters belonging to the k-cores.

12.
Phys Rev Lett ; 120(18): 188001, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775357

RESUMO

Three-dimensional shells can be synthesized from the spontaneous self-folding of two-dimensional templates of interconnected panels, called nets. However, some nets are more likely to self-fold into the desired shell under random movements. The optimal nets are the ones that maximize the number of vertex connections, i.e., vertices that have only two of its faces cut away from each other in the net. Previous methods for finding such nets are based on random search, and thus, they do not guarantee the optimal solution. Here, we propose a deterministic procedure. We map the connectivity of the shell into a shell graph, where the nodes and links of the graph represent the vertices and edges of the shell, respectively. Identifying the nets that maximize the number of vertex connections corresponds to finding the set of maximum leaf spanning trees of the shell graph. This method allows us not only to design the self-assembly of much larger shell structures but also to apply additional design criteria, as a complete catalog of the maximum leaf spanning trees is obtained.

13.
Phys Rev E ; 96(2-1): 022317, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950620

RESUMO

Directed networks have various topologically different extensive components, in contrast to a single giant component in undirected networks. We study the sensitivity (response) of the sizes of these extensive components in directed complex networks to the addition and pruning of edges and vertices. We introduce the susceptibility, which quantifies this sensitivity. We show that topologically different parts of a directed network have different sensitivity to the addition and pruning of edges and vertices and, therefore, they are characterized by different susceptibilities. These susceptibilities diverge at the critical point of the directed percolation transition, signaling the appearance (or disappearance) of the giant strongly connected component in the infinite size limit. We demonstrate this behavior in randomly damaged real and synthetic directed complex networks, such as the World Wide Web, Twitter, the Caenorhabditis elegans neural network, directed Erdos-Rényi graphs, and others. We reveal a nonmonotonic dependence of the sensitivity to random pruning of edges or vertices in the case of C. elegans and Twitter that manifests specific structural peculiarities of these networks. We propose the measurements of the susceptibilities during the addition or pruning of edges and vertices as a new method for studying structural peculiarities of directed networks.

14.
Phys Rev E ; 95(4-1): 042322, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505741

RESUMO

Message passing equations yield a sharp percolation transition in finite graphs, as an artifact of the locally treelike approximation. For an arbitrary finite, connected, undirected graph we construct an infinite tree having the same local structural properties as this finite graph, when observed by a nonbacktracking walker. Formally excluding the boundary, this infinite tree is a generalization of the Bethe lattice. We indicate an infinite, locally treelike, random network whose local structure is exactly given by this infinite tree. Message passing equations for various cooperative models on this construction are the same as for the original finite graph, but here they provide the exact solutions of the corresponding cooperative problems. These solutions are good approximations to observables for the models on the original graph when it is sufficiently large and not strongly correlated. We show how to express these solutions in the critical region in terms of the principal eigenvector components of the nonbacktracking matrix. As representative examples we formulate the problems of the random and optimal destruction of a connected graph in terms of our construction, the nonbacktracking expansion. We analyze the limitations and the accuracy of the message passing algorithms for different classes of networks and compare the complexity of the message passing calculations to that of direct numerical simulations. Notably, in a range of important cases, simulations turn out to be more efficient computationally than the message passing.

15.
Phys Rev Lett ; 118(7): 078301, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256854

RESUMO

We reveal a hierarchical, multilayer organization of finite components-i.e., tendrils and tubes-around the giant connected components in directed networks and propose efficient algorithms allowing one to uncover the entire organization of key real-world directed networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. With increasing damage, the giant components decrease in size while the number and size of tendril layers increase, enhancing the susceptibility of the networks to damage.

16.
Phys Rev E ; 94(2-1): 022302, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627312

RESUMO

A majority of studied models for scale-free networks have degree distributions with exponents greater than two. Real networks, however, can demonstrate essentially more heavy-tailed degree distributions. We explore two models of scale-free equilibrium networks that have the degree distribution exponent γ=1, P(q)∼q^{-γ}. Such degree distributions can be identified in empirical data only if the mean degree of a network is sufficiently high. Our models exploit a rewiring mechanism. They are local in the sense that no knowledge of the network structure, apart from the immediate neighborhood of the vertices, is required. These models generate uncorrelated networks in the infinite size limit, where they are solved explicitly. We investigate finite size effects by the use of simulations. We find that both models exhibit disassortative degree-degree correlations for finite network sizes. In addition, we observe a markedly degree-dependent clustering in the finite networks. We indicate a real-world network with a similar degree distribution.

17.
Phys Rev E ; 94(1-1): 012308, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575149

RESUMO

We study the impact of random pinning fields on the emergence of synchrony in the Kuramoto model on complete graphs and uncorrelated random complex networks. We consider random fields with uniformly distributed directions and homogeneous and heterogeneous (Gaussian) field magnitude distribution. In our analysis, we apply the Ott-Antonsen method and the annealed-network approximation to find the critical behavior of the order parameter. In the case of homogeneous fields, we find a tricritical point above which a second-order phase transition gives place to a first-order phase transition when the network is either fully connected or scale-free with the degree exponent γ>5. Interestingly, for scale-free networks with 2<γ≤5, the phase transition is of second-order at any field magnitude, except for degree distributions with γ=3 when the transition is of infinite order at K_{c}=0 independent of the random fields. Contrary to the Ising model, even strong Gaussian random fields do not suppress the second-order phase transition in both complete graphs and scale-free networks, although the fields increase the critical coupling for γ>3. Our simulations support these analytical results.

18.
Phys Rev E ; 94(6-1): 062305, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085335

RESUMO

We describe the phenomenon of localization in the epidemic susceptible-infective-susceptible model on highly heterogeneous networks in which strongly connected nodes (hubs) play the role of centers of localization. We find that in this model the localized states below the epidemic threshold are metastable. The longevity and scale of the metastable outbreaks do not show a sharp localization transition; instead there is a smooth crossover from localized to delocalized states as we approach the epidemic threshold from below. Analyzing these long-lasting local outbreaks for a random regular graph with a hub, we show how this localization can be detected from the shape of the distribution of the number of infective nodes.


Assuntos
Epidemias/estatística & dados numéricos , Modelos Estatísticos , Surtos de Doenças/estatística & dados numéricos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Humanos , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-25974461

RESUMO

In the usual Achlioptas processes the smallest clusters of a few randomly chosen ones are selected to merge together at each step. The resulting aggregation process leads to the delayed birth of a giant cluster and the so-called explosive percolation transition showing a set of anomalous features. We explore a process with the opposite selection rule, in which the biggest clusters of the randomly chosen ones merge together. We develop a theory of this kind of percolation based on the Smoluchowsky equation, find the percolation threshold, and describe the scaling properties of this continuous transition, namely, the critical exponents and amplitudes, and scaling functions. We show that, qualitatively, this transition is similar to the ordinary percolation one, though occurring in less connected systems.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25871087

RESUMO

We describe the effect of power-law initial distributions of clusters on ordinary percolation and its generalizations, specifically, models of explosive percolation processes based on local optimization. These aggregation processes were shown to exhibit continuous phase transitions if the evolution starts from a set of disconnected nodes. Since the critical exponents of the order parameter in explosive percolation transitions turned out to be very small, these transitions were first believed to be discontinuous. In this article we analyze the evolution starting from clusters of nodes whose sizes are distributed according to a power law. We show that these initial distributions change dramatically the position and order of the phase transitions in these problems. We find a particular initial power-law distribution producing a peculiar effect on explosive percolation, namely, before the emergence of the percolation cluster, the system is in a "critical phase" with an infinite generalized susceptibility. This critical phase is absent in ordinary percolation models with any power-law initial conditions. The transition from the critical phase is an infinite-order phase transition, which resembles the scenario of the Berezinskii-Kosterlitz-Thouless phase transition. We obtain the critical singularity of susceptibility at this peculiar infinite-order transition in explosive percolation. It turns out that susceptibility in this situation does not obey the Curie-Weiss law.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...