Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639738

RESUMO

A novel strain, MA3_2.13T, was isolated from deep-sea sediment of Madeira Archipelago, Portugal, and characterized using a polyphasic approach. This strain produced dark brown soluble pigments, bronwish black substrate mycelia and an aerial mycelium with yellowish white spores, when grown on GYM 50SW agar. The main respiratory quinones were MK-10(H4), MK-10(H6) and MK-10(H8). Diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two glycophospholipids were identified as the main phospholipids. The major cellular fatty acids were iso-C16 : 1, iso-C16 : 0, anteiso-C17 : 1 and anteiso-C17 : 0. Phylogenetic analyses based on 16S rRNA gene showed that strain MA3_2.13T is a member of the genus Streptomyces and was most closely related to Streptomyces triticirhizae NEAU-YY642T (NR_180032.1; 16S rRNA gene similarity 97.9 %), Streptomyces sedi YIM 65188T (NR_044582.1; 16S rRNA gene similarity 97.4 %), Streptomyces mimosae 3MP-10T (NR_170412.1; 16S rRNA gene similarity 97.3 %) and Streptomyces zhaozhouensis NEAU-LZS-5T (NR_133874.1; 16S rRNA gene similarity 97.0 %). Genome pairwise comparisons with closest related type strains retrieved values below the threshold for species delineation suggesting that strain MA3_2.13T represents a new branch within the genus Streptomyces. Based on these results, strain MA3_2.13T (=DSM 115980T=LMG 33094T) is proposed as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces profundus sp. nov. is proposed.


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Portugal , Microbiologia do Solo , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Fosfolipídeos/química
2.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667270

RESUMO

The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.


Assuntos
Mitocôndrias , Proteína Fosfatase 2 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Ferro/metabolismo , Transporte Proteico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação/genética
3.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675382

RESUMO

Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor (SGLT2i), has shown demonstrated benefits for renal and cardiovascular outcomes in large clinical trials. However, short-term concerns regarding its impact on renal function and electrolyte balance exist. This study aimed to evaluate the short-term effects of dapagliflozin on renal function and electrolyte balance in patients newly prescribed the medication. A retrospective analysis of 246 patients who initiated dapagliflozin therapy was conducted. Serum creatinine, sodium, and potassium levels were measured at baseline (before dapagliflozin) and 5-8 days after initiation (endpoint). A Wilcoxon signed-rank test, Pearson's chi-square test, and Fischer's exact test were used for the data analysis. Glycemia and sodium levels were significantly higher at the baseline compared to the endpoint (p < 0.001). Conversely, creatinine and potassium levels were significantly higher at the endpoint than at the baseline (p < 0.001). The prevalence of hyponatremia and hyperkalemia were increased at the endpoint (17.5% vs. 10.2% and 16.7% vs. 8.9%, respectively). Although not statistically significant, a trend towards increased hyponatremia with the co-administration of furosemide was observed (p = 0.089). No significant association was found between potassium-sparing medications (p > 0.05) and hyperkalemia, except for angiotensin receptor blockers (p = 0.017). The combination of dapagliflozin and furosemide significantly increased the risk of acute kidney injury (AKI) at the endpoint (p = 0.006). Age, gender, and chronic kidney disease status did not significantly influence the occurrence of AKI, hyponatremia, or hyperkalemia (p > 0.05). These findings emphasize the importance of the close monitoring of renal function and electrolyte balance, particularly in the early stages of dapagliflozin therapy, especially in patients receiving diuretics or renin-angiotensin-aldosterone system inhibitors.

5.
Eur J Case Rep Intern Med ; 11(1): 004190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223273

RESUMO

Introduction: Most lung cancers are diagnosed at an advanced stage. Common metastatic sites include the brain, bone, liver and adrenal glands. Ocular metastases, however, are extremely rare. We present a case of advanced lung adenocarcinoma presenting exclusively with photopsias attributable to retinal metastases. Case description: We describe a woman in her fifties, a lifetime non-smoker with an unremarkable medical and family history, who presented to the emergency department with photopsias for a week. Ophthalmology evaluation revealed decreased visual acuity bilaterally, and a fundus examination disclosed lesions suggestive of bilateral retinal metastases. A comprehensive evaluation diagnosed a stage IVb lung adenocarcinoma with exon 19 mutation on epidermal growth factor receptor gene. Subsequently, she developed complaints of headaches and dizziness. She received frontline osimertinib 80 mg daily, preceded by upfront whole-brain radiation therapy with partial orbital inclusion for symptomatic ocular and brain metastases. After ten radiation therapy sessions, her complaints were resolved and an ophthalmology revaluation revealed improvement in visual acuity and resolution of photopsia complaints. The patient is currently on osimertinib and preserves an ECOG score of 0. Conclusion: Retinal metastases usually indicate advanced disease, so presenting with isolated ocular symptoms is exceedingly rare. Especially in cases of uncommon metastases, a multidisciplinary approach is fundamental for a prompt diagnosis and timely treatment, impacting prognosis and quality of life. LEARNING POINTS: Ocular metastases in lung cancer are usually a sign of advanced disease.Advanced lung adenocarcinoma presenting solely with retinal metastases is extremely rare.A multidisciplinary team is essential for the diagnosis and treatment of lung cancer with uncommon metastases.

6.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149663

RESUMO

The microtubule network is formed from polymerised tubulin subunits and associating proteins, which govern microtubule dynamics and a diverse array of functions. To identify novel microtubule-binding proteins, we have developed an unbiased biochemical assay, which relies on the selective extraction of cytosolic proteins from U2OS cells, while leaving behind the microtubule network. Candidate proteins are linked to microtubules by their sensitivities to the depolymerising drug nocodazole or the microtubule-stabilising drug taxol, which is quantitated by mass spectrometry. Our approach is benchmarked by co-segregation of tubulin and previously established microtubule-binding proteins. We then identify several novel candidate microtubule-binding proteins, from which we have selected the ubiquitin E3 ligase tripartite motif-containing protein 3 (TRIM3) for further characterisation. We map TRIM3 microtubule binding to its C-terminal NHL-repeat region. We show that TRIM3 is required for the accumulation of acetylated tubulin, following treatment with taxol. Furthermore, loss of TRIM3 partially recapitulates the reduction in nocodazole-resistant microtubules characteristic of α-tubulin acetyltransferase 1 (ATAT1) depletion. These results can be explained by a decrease in ATAT1 following depletion of TRIM3 that is independent of transcription.


Assuntos
Proteômica , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Nocodazol/farmacologia , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas/metabolismo , Proteínas de Transporte/metabolismo
7.
Front Plant Sci ; 14: 1271644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126016

RESUMO

The increment in global temperature reduces crop productivity, which in turn threatens food security. Currently, most of our food supply is produced by plants and the human population is estimated to reach 9 billion by 2050. Gaining insights into how plants navigate heat stress in their reproductive phase is essential for effectively overseeing the future of agricultural productivity. The reproductive success of numerous plant species can be jeopardized by just one exceptionally hot day. While the effects of heat stress on seedlings germination and root development have been extensively investigated, studies on reproduction are limited. The intricate processes of gamete development and fertilization unfold within a brief timeframe, largely concealed within the flower. Nonetheless, heat stress is known to have important effects on reproduction. Considering that heat stress typically affects both male and female reproductive structures concurrently, it remains crucial to identify cultivars with thermotolerance. In such cultivars, ovules and pollen can successfully undergo development despite the challenges posed by heat stress, enabling the completion of the fertilization process and resulting in a robust seed yield. Hereby, we review the current understanding of the molecular mechanisms underlying plant resistance to abiotic heat stress, focusing on the reproductive process in the model systems of Arabidopsis and Oryza sativa.

8.
J Struct Biol ; 215(4): 108038, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858875

RESUMO

Transcription of specific genes in bacteria under environmental stress is frequently initiated by extracytoplasmic function (ECF) σ factors. ECFs σ factors harbour two conserved domains, σ2 and σ4, for transcription initiation by recognition of the promoter region and recruitment of RNA polymerase (RNAP). The crystal structure of Streptomyces tsukubaensis SigG1, an ECF56-family σ factor, was determined revealing σ2, σ4 and the additional carboxi-terminal domain SnoaL_2 tightly packed in a compact conformation. The structure of anti-sigma RsfG was also determined by X-ray crystallography and shows a rare ß-barrel fold. Analysis of the metal binding motifs inside the protein barrel are consistent with Fe(III) binding, which is in agreement with previous findings that the Streptomyces tsukubaensis ECF56 SigG1-RsfG system is involved in metal-ion homeostasis.


Assuntos
Fator sigma , Streptomyces , Fator sigma/genética , Fator sigma/química , Fator sigma/metabolismo , Proteínas de Bactérias/química , Compostos Férricos , Modelos Moleculares , Streptomyces/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/química , Regulação Bacteriana da Expressão Gênica
9.
Artigo em Inglês | MEDLINE | ID: mdl-37623152

RESUMO

Mycotoxins, produced by fungi as secondary metabolites, have the potential to induce both short-term and long-term toxic consequences in animals and humans. The present study aimed to determine multi-mycotoxin levels in Algerian workers using urine as the target. A method based on a QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction procedure followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was optimized and validated for the determination of eleven mycotoxins in 96 urine samples. Different sorbents were tested to be used in the dispersive solid-phase extraction (d-SPE) cleanup step of QuEChERS. The final method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, and precision. All samples contained at least two mycotoxins, and toxin-2 (T-2) was the most common, being found in 92.7% of the samples, followed by zearalenone (ZEN) in 90.6% of positive samples, and ochratoxin A (OTA) in 86.4%. T-2 levels ranged from 0.3 µg/L to 36.3 µg/L, while OTA ranged from 0.3 µg/L to 3.5 µg/L, and ZEN ranged from 7.6 µg/L to 126.8 µg/L. This was the first mycotoxin biomonitoring study carried out in the Algerian population. The findings highlight the need for accurate data for better risk assessment and for the development of better regulation to manage mycotoxin contamination in this country.


Assuntos
Micotoxinas , Zearalenona , Animais , Humanos , Monitoramento Biológico , Cromatografia Líquida , Espectrometria de Massas em Tandem
10.
Fungal Biol ; 127(7-8): 1111-1117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495301

RESUMO

The textile industry produces harmful effluents that are discharged into the environment, damaging the aquatic and other ecosystems. A yeast-based solution for decolorization of textile industrial wastewater was produced and evaluated. Three yeast strains, Candida parapsilosis (HOMOGS20B), Yarrowia lipolytica (HOMOGST27AB) and Candida pseudoglaebosa (LIIIS36B), isolated from a textile wastewater treatment plant and previously selected for their dye decolorization capacity, were freeze-dried. Additionally, Yarrowia lipolytica (HOMOGST27AB) was also spray-dried. Skim milk powder and maltodextrin were used as cell protectors, and the freeze-dried products were stored at cold (4 °C) and room temperature for 210 days. The viability of the yeast cells and their decolorization capacity over time were assessed. Dried yeast cells maintained their viability, and decolorization capacity for at least 90 days of storage after spray- and freeze-drying with both cell-protecting agents. The dried yeast-based solution for decolorizing textile industrial wastewater combines stability, efficiency, and convenience of production for application in real industrial facilities.


Assuntos
Águas Residuárias , Fermento Seco , Ecossistema , Liofilização , Têxteis
11.
Acta Medica (Hradec Kralove) ; 66(1): 28-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384807

RESUMO

DRESS syndrome is an idiosyncratic drug reaction and potentially life-threatening. The authors report a case of this syndrome presenting with fever, rash, mucosal involvement, liver and muscle involvement associated with moxifloxacin treatment.


Assuntos
Síndrome de Hipersensibilidade a Medicamentos , Eosinofilia , Exantema , Humanos , Síndrome de Hipersensibilidade a Medicamentos/diagnóstico , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Eosinofilia/induzido quimicamente , Eosinofilia/diagnóstico , Exantema/induzido quimicamente , Exantema/diagnóstico , Fígado
12.
Cell Mol Life Sci ; 80(6): 141, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149819

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/metabolismo , Córtex Pré-Frontal/metabolismo , Biomarcadores , Proteínas tau/metabolismo
13.
Mol Biol Rep ; 50(6): 4887-4897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37072653

RESUMO

BACKGROUND: In Brachiaria sexual reproduction, during ovule development, a nucellar cell differentiates into a megaspore mother cell (MMC) that, through meiosis and mitosis, gives rise to a reduced embryo sac. In aposporic apomictic Brachiaria, next to the MMC, other nucellar cells differentiate into aposporic initials that enter mitosis directly forming an unreduced embryo sac. The IPT (isopentenyltransferase) family comprises key genes in the cytokinin (CK) pathway which are expressed in Arabidopsis during ovule development. BbrizIPT9, a B. brizantha (syn. Urochloa brizantha) IPT9 gene, highly similar to genes of other Poaceae plants, also shows similarity with Arabidopsis IPT9, AtIPT9. In this work, we aimed to investigate association of BbrizIPT9 with ovule development in sexual and apomictic plants. METHODS AND RESULTS: RT-qPCR showed higher BbrizIPT9 expression in the ovaries of sexual than in the apomictic B. brizantha. Results of in-situ hybridization showed strong signal of BbrizIPT9 in the MMC of both plants, at the onset of megasporogenesis. By analyzing AtIPT9 knockdown mutants, we verified enlarged nucellar cell, next to the MMC, in a percentage significantly higher than in the wild type, suggesting that knockout of AtIPT9 gene triggered the differentiation of extra MMC-like cells. CONCLUSIONS: Our results indicate that AtIPT9 might be involved in the proper differentiation of a single MMC during ovule development. The expression of a BbrizIPT9, localized in male and female sporocytes, and lower in apomicts than in sexuals, and effect of IPT9 knockout in Arabidopsis, suggest involvement of IPT9 in early ovule development.


Assuntos
Arabidopsis , Brachiaria , Brachiaria/genética , Arabidopsis/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Poaceae , Reprodução/genética , Regulação da Expressão Gênica de Plantas/genética
15.
Nat Commun ; 14(1): 1772, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997530

RESUMO

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor ß7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+ß7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Doença Aguda , Linfócitos T CD8-Positivos , Teste para COVID-19 , Progressão da Doença , Imunoglobulina A
16.
Cell Oncol (Dordr) ; 46(3): 697-715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36745330

RESUMO

BACKGROUND: Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS: Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS: Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION: C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.


Assuntos
Neoplasias do Endométrio , Proteômica , Humanos , Feminino , Glicosilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenótipo , Galactosiltransferases
17.
Sci Rep ; 13(1): 1316, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693864

RESUMO

The balance between parental genome dosage is critical to offspring development in both animals and plants. In some angiosperm species, despite the imbalance between maternally and paternally inherited chromosome sets, crosses between parental lines of different ploidy may result in viable offspring. However, many plant species, like Arabidopsis thaliana, present a post-zygotic reproductive barrier, known as triploid block which results in the inability of crosses between individuals of different ploidy to generate viable seeds but also, in defective development of the seed. Several paternal regulators have been proposed as active players in establishing the triploid block. Maternal regulators known to be involved in this process are some flavonoid biosynthetic (FB) genes, expressed in the innermost layer of the seed coat. Here we explore the role of selected flavonoid pathway genes in triploid block, including TRANSPARENT TESTA 4 (TT4), TRANSPARENT TESTA 7 (TT7), SEEDSTICK (STK), TRANSPARENT TESTA 16 (TT16), TT8 and TRANSPARENT TESTA 13 (TT13). This approach allowed us to detect that TT8, a bHLH transcription factor, member of this FB pathway is required for the paternal genome dosage, as loss of function tt8, leads to complete rescue of the triploid block to seed development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triploidia , Regulação da Expressão Gênica de Plantas , Sementes , Flavonoides/metabolismo , Mutação , Proteínas de Domínio MADS/genética
18.
Environ Microbiol ; 25(2): 383-396, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36428208

RESUMO

Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.


Assuntos
Bactérias , Técnicas Biossensoriais , Bactérias/genética , Genes Bacterianos , Expressão Gênica
19.
Cureus ; 14(10): e30599, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36420242

RESUMO

INTRODUCTION: In coronavirus disease 2019 (COVID-19), there are no tools available for the difficult task of recognizing which patients do not benefit from maintaining respiratory support, such as noninvasive ventilation (NIV). Identifying treatment failure is crucial to provide the best possible care and optimizing resources. Therefore, this study aimed to build a model that predicts NIV failure in patients who did not progress to invasive mechanical ventilation (IMV). METHODS: This retrospective observational study included critical COVID-19 patients treated with NIV who did not progress to IMV. Patients were admitted to a Portuguese tertiary hospital between October 1, 2020, and March 31, 2021. The outcome of interest was NIV failure, defined as COVID-19-related in-hospital death. A binary logistic regression was performed, where the outcome (mortality) was the dependent variable. Using the independent variables of the logistic regression a decision-tree classification model was implemented. RESULTS: The study sample, composed of 103 patients, had a mean age of 66.3 years (SD=14.9), of which 38.8% (40 patients) were female. Most patients (82.5%) were autonomous for basic activities of daily living. The prediction model was statistically significant with an area under the curve of 0.994 and a precision of 0.950. Higher age, a higher number of days with increases in the fraction of inspired oxygen (FiO2), a higher number of days of maximum expiratory positive airway pressure, a lower number of days on NIV, and a lower number of days from disease onset to hospital admission were, with statistical significance, associated with increased odds of death. A decision-tree classification model was then obtained to achieve the best combination of variables to predict the outcome of interest. CONCLUSIONS: This study presents a model to predict death in COVID-19 patients treated with NIV in patients who did not progress to IMV, based on easily applicable variables that mainly reflect patients' evolution during hospitalization. Along with the decision-tree classification model, these original findings may help clinicians define the best therapeutical approach to each patient, prioritizing life-comforting measures when adequate, and optimizing resources, which is crucial within limited or overloaded healthcare systems. Further research is needed on this subject of treatment failure, not only to understand if these results are reproducible but also, in a broader sense, helping to fill this gap in modern medicine guidelines.

20.
EMBO J ; 41(24): e112006, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36398858

RESUMO

Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.


Assuntos
NF-kappa B , Ubiquitina , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...