Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142760

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Assuntos
Doença de Niemann-Pick Tipo C , Camundongos , Humanos , Animais , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patologia
2.
PLoS One ; 12(8): e0182946, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797094

RESUMO

BACKGROUND: High throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may be due to the presence of pathogenic mutations located deep within the introns, which are not detected by conventional sequencing analysis restricted to exons and exon-intron boundaries. OBJECTIVE: The aim of this study was to develop a whole-gene sequencing strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis. METHODS AND RESULTS: The full genomic DNA sequence of 26 genes previously associated with HCM was analysed in 16 unrelated patients. We identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which are predicted to act through disruption of either splicing or transcription factor binding sites, are 3-fold more frequent in our cohort of probands than in normal European populations. Moreover, we found a patient that is compound heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, while family members that are compound heterozygous are clinically affected. CONCLUSION: This study provides a framework for scrutinizing variation along the complete intronic sequence of HCM-associated genes and prioritizing candidates for mechanistic and functional analysis. Our data suggest that deep intronic variation contributes to HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica/genética , Variação Genética , Íntrons , Proteínas Quinases Ativadas por AMP/genética , Proteínas de Transporte/genética , Criança , Conectina/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Vinculina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...