Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(4)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959878

RESUMO

Objective. Developing neural decoders robust to non-stationary conditions is essential to ensure their long-term accuracy and stability. This is particularly important when decoding the neural drive to muscles during dynamic contractions, which pose significant challenges for stationary decoders.Approach. We propose a novel adaptive electromyography (EMG) decomposition algorithm that builds on blind source separation methods by leveraging the Kullback-Leibler divergence and kurtosis of the signals as metrics for online learning. The proposed approach provides a theoretical framework to tune the adaptation hyperparameters and compensate for non-stationarities in the mixing matrix, such as due to dynamic contractions, and to identify the underlying motor neuron (MN) discharges. The adaptation is performed in real-time (∼22 ms of computational time per 100 ms batches).Main results. The hyperparameters of the proposed adaptation captured anatomical differences between recording locations (forearm vs wrist) and generalised across subjects. Once optimised, the proposed adaptation algorithm significantly improved all decomposition performance metrics with respect to the absence of adaptation in a wide range of motion of the wrist (80∘). The rate of agreement, sensitivity, and precision were⩾90%in⩾80%of the cases in both simulated and experimentally recorded data, according to a two-source validation approach.Significance. The findings demonstrate the suitability of the proposed online learning metrics and hyperparameter optimisation to compensate the induced modulation and accurately decode MN discharges in dynamic conditions. Moreover, the study proposes an experimental validation method for EMG decomposition in dynamic tasks.


Assuntos
Eletromiografia , Eletromiografia/métodos , Humanos , Masculino , Adulto , Algoritmos , Feminino , Adulto Jovem , Músculo Esquelético/fisiologia , Sistemas On-Line , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Aprendizado de Máquina
2.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959262

RESUMO

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Assuntos
Biologia Computacional , Eletromiografia , Movimento , Músculo Esquelético , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Modelos Neurológicos
3.
Nat Commun ; 14(1): 1600, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959193

RESUMO

Muscle electrophysiology has emerged as a powerful tool to drive human machine interfaces, with many new recent applications outside the traditional clinical domains, such as robotics and virtual reality. However, more sophisticated, functional, and robust decoding algorithms are required to meet the fine control requirements of these applications. Deep learning has shown high potential in meeting these demands, but requires a large amount of high-quality annotated data, which is expensive and time-consuming to acquire. Data augmentation using simulations, a strategy applied in other deep learning applications, has never been attempted in electromyography due to the absence of computationally efficient models. We introduce a concept of Myoelectric Digital Twin - highly realistic and fast computational model tailored for the training of deep learning algorithms. It enables simulation of arbitrary large and perfectly annotated datasets of realistic electromyography signals, allowing new approaches to muscular signal decoding, accelerating the development of human-machine interfaces.


Assuntos
Aprendizado Profundo , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Algoritmos , Simulação por Computador
4.
J Neural Eng ; 19(2)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303732

RESUMO

Objective. Neural interfaces need to become more unobtrusive and socially acceptable to appeal to general consumers outside rehabilitation settings.Approach. We developed a non-invasive neural interface that provides access to spinal motor neuron activities from the wrist, which is the preferred location for a wearable. The interface decodes far-field potentials present at the tendon endings of the forearm muscles using blind source separation. First, we evaluated the reliability of the interface to detect motor neuron firings based on far-field potentials, and thereafter we used the decoded motor neuron activity for the prediction of finger contractions in offline and real-time conditions.Main results. The results showed that motor neuron activity decoded from the far-field potentials at the wrist accurately predicted individual and combined finger commands and therefore allowed for highly accurate real-time task classification.Significance.These findings demonstrate the feasibility of a non-invasive, neural interface at the wrist for precise real-time control based on the output of the spinal cord.


Assuntos
Neurônios Motores , Punho , Eletromiografia/métodos , Neurônios Motores/fisiologia , Reprodutibilidade dos Testes , Medula Espinal , Punho/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA