Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 63(7): 1693-1703, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460272

RESUMO

OBJECTIVE: Antiseizure drugs (ASDs) modulate synaptic and ion channel function to prevent abnormal hypersynchronous or excitatory activity arising in neuronal networks, but the relationship between ASDs with respect to their impact on network activity is poorly defined. In this study, we first investigated whether different ASD classes exert differential impact upon network activity, and we then sought to classify ASDs according to their impact on network activity. METHODS: We used multielectrode arrays (MEAs) to record the network activity of cultured cortical neurons after applying ASDs from two classes: sodium channel blockers (SCBs) and γ-aminobutyric acid type A receptor-positive allosteric modulators (GABA PAMs). A two-dimensional representation of changes in network features was then derived, and the ability of this low-dimensional representation to classify ASDs with different molecular targets was assessed. RESULTS: A two-dimensional representation of network features revealed a separation between the SCB and GABA PAM drug classes, and could classify several test compounds known to act through these molecular targets. Interestingly, several ASDs with novel targets, such as cannabidiol and retigabine, had closer similarity to the SCB class with respect to their impact upon network activity. SIGNIFICANCE: These results demonstrate that the molecular target of two common classes of ASDs is reflected through characteristic changes in network activity of cultured neurons. Furthermore, a low-dimensional representation of network features can be used to infer an ASDs molecular target. This approach may allow for drug screening to be performed based on features extracted from MEA recordings.


Assuntos
Neurônios , Aprendizado de Máquina não Supervisionado , Neurônios/fisiologia , Receptores de GABA , Bloqueadores dos Canais de Sódio , Ácido gama-Aminobutírico
2.
Epilepsy Behav ; 121(Pt B): 106556, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31676240

RESUMO

Epilepsy diagnosis can be costly, time-consuming, and not uncommonly inaccurate. The reference standard diagnostic monitoring is continuous video-electroencephalography (EEG) monitoring, ideally capturing all events or concordant interictal discharges. Automating EEG data review would save time and resources, thus enabling more people to receive reference standard monitoring and also potentially heralding a more quantitative approach to therapeutic outcomes. There is substantial research into the automated detection of seizures and epileptic activity from EEG. However, automated detection software is not widely used in the clinic, and despite numerous published algorithms, few methods have regulatory approval for detecting epileptic activity from EEG. This study reports on a deep learning algorithm for computer-assisted EEG review. Deep convolutional neural networks were trained to detect epileptic discharges using a preexisting dataset of over 6000 labelled events in a cohort of 103 patients with idiopathic generalized epilepsy (IGE). Patients underwent 24-hour ambulatory outpatient EEG, and all data were curated and confirmed independently by two epilepsy specialists (Seneviratne et al., 2016). The resulting automated detection algorithm was then used to review diagnostic scalp EEG for seven patients (four with IGE and three with events mimicking seizures) to validate performance in a clinical setting. The automated detection algorithm showed state-of-the-art performance for detecting epileptic activity from clinical EEG, with mean sensitivity of >95% and corresponding mean false positive rate of 1 detection per minute. Importantly, diagnostic case studies showed that the automated detection algorithm reduced human review time by 80%-99%, without compromising event detection or diagnostic accuracy. The presented results demonstrate that computer-assisted review can increase the speed and accuracy of EEG assessment and has the potential to greatly improve therapeutic outcomes. This article is part of the Special Issue "NEWroscience 2018".


Assuntos
Epilepsia Generalizada , Epilepsia , Algoritmos , Computadores , Eletroencefalografia , Epilepsia Generalizada/diagnóstico , Humanos , Processamento de Sinais Assistido por Computador
3.
ACS Nano ; 11(12): 12077-12086, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29111670

RESUMO

Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1648-1651, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060200

RESUMO

Brain-computer interfaces are commonly proposed to assist individuals with locked-in syndrome to interact with the world around them. In this paper, we present a pipeline to move from recorded brain signals to real-time classification on a low-power platform, such as IBM's TrueNorth Neurosynaptic System. Our results on a EEG-based hand squeeze task show that using a convolutional neural network and a time preserving signal representation strategy provides a good balance between high accuracy and feasibility in a real-time application. This pathway can be adapted to the management of a variety of conditions, including spinal cord injury, epilepsy and Parkinson's disease.


Assuntos
Eletroencefalografia , Encéfalo , Interfaces Cérebro-Computador , Mãos , Humanos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA