Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631587

RESUMO

Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.


Assuntos
Celulose , Quitosana , Nanofibras , Prótons , Propriedades de Superfície , Quitosana/química , Celulose/química , Nanofibras/química , Permeabilidade , Módulo de Elasticidade , Fenômenos Mecânicos , Água/química
2.
Carbohydr Polym ; 302: 120381, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604059

RESUMO

In the last decades, the production of value-added products from lignocellulosic biomass (LCB) has gained relevance. Xylans, which are the main hemicellulose compounds in LCB, may be extracted by alkaline pretreatment and employed for xylooligosaccharide (XOS) production. However, xylan extraction currently works as a black box due to the lack of characterization of the involved streams. Therefore, the appropriate operational conditions often remain unclear, especially in hardwoods. In this study, alkaline/thermal pretreatments at different operational conditions were evaluated for xylan extractions from Chilean Nothofagus species sawdust, determining the chemical compositions of the fractions at each step of the process. Results indicated that increasing alkali concentration (NaOH) leads to a higher xylan extraction, but also to high salt production during the acid neutralization step, decreasing xylan's purity and therefore XOS production. In this context, decreasing NaOH concentration and neutralizing it by membrane filtration, allow extracting xylans (62.5 %) of higher-purity (77 %).


Assuntos
Oligossacarídeos , Xilanos , Xilanos/química , Hidróxido de Sódio , Hidrólise , Oligossacarídeos/química
3.
Polymers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956642

RESUMO

Bleached kraft pulps from eucalyptus and pine were subjected to cold caustic extraction (CCE) with NaOH (5, 10, 17.5, and 35%) for hemicelluloses removal and to increase cellulose accessibility. The effect of these changes was evaluated in enzymatic saccharification with the multicomponent Cellic CTec3 enzyme cocktail, and in viscosity reduction of pulps with the monocomponent Trichoderma reesei endoglucanase (EG). After CCE with 10% NaOH (CCE10) and 17.5% NaOH (CCE17.5), hemicellulose content lower than 1% was achieved in eucalyptus and pine pulps, respectively. At these concentrations, cellulose I started to be converted into cellulose II. NaOH concentrations higher than 17.5% decreased the intrinsic viscosity (from 730 to 420 mL/g in eucalyptus and from 510 to 410 mL/g in pine). Cellulose crystallinity was reduced from 60% to 44% in eucalyptus and from 71% to 44% in pine, as the NaOH concentration increased. Enzymatic multicomponent saccharification showed higher glucose yields in all CCE-treated eucalyptus samples (up to 93%) while only CCE17.5 and CCE35 pine pulps achieved 90% after 40 h of incubation. Untreated bleached pulps of both species presented saccharification yields lower than 70%. When monocomponent EG was used to treat the same pulps, depending on enzyme charge and incubation time, a wide range of intrinsic viscosity reduction was obtained (up to 74%). Results showed that eucalyptus pulps are more accessible and easier to hydrolyze by enzymes than pine pulps and that the conversion of cellulose I to cellulose II hydrate only has the effect of increasing saccharification of CCE pine samples. Viscosity reduction of CCE pulps and EG treated pulps were obtained in a wide range indicating that pulps presented characteristics suitable for cellulose derivatives production.

4.
Green Chem ; 24(9): 3794-3804, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35694220

RESUMO

Blueberry pruning waste (BPw), sourced as residues from agroforestry operations in Chile, was used to produce added-value products, including platform chemicals and materials. BPw fractionation was implemented using biobased solvents (γ-valerolactone, GVL) and pyrolysis (500 °C), yielding solid fractions that are rich in phenols and antioxidants. The liquid fraction was found to be enriched in sugars, acids, and amides. Alongside, filaments and 3D-printed meshes were produced via wet spinning and Direct-Ink-Writing (DIW), respectively. For the latter purpose, BPw was dissolved in an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), and regenerated into lignocellulose filaments with highly aligned nanofibrils (wide-angle X-ray scattering) that simultaneously showed extensibility (wet strain as high as 39%). BPw-derived lignocellulose filaments showed a tenacity (up to 2.3 cN dtex-1) that is comparable to that of rayon fibers and showed low light reflectance (R ES factor <3%). Meanwhile, DIW of the respective gels led to meshes with up to 60% wet stretchability. The LCF and meshes were demonstrated to have reliable performance in marine environments. As a demonstration, we show the prospects of replacing plastic cords and other materials used to restore coral reefs on the coast of Mexico.

5.
Appl Biochem Biotechnol ; 192(4): 1124-1146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32700200

RESUMO

Three yeast strains were isolated from decaying wood of Chilean Valdivian forest and identified as Meyerozyma guilliermondii, Scheffersomyces coipomensis, and Sugiyamaella paludigena. These strains were able to efficiently grow on the major monomers contained in Pinus spp. and Eucalyptus spp. wood that includes glucose (Glc), xylose (Xyl), and mannose (Man), showing at 28 °C higher uptake rates for Man, and in some cases for Glc, than for Xyl, used as single carbon sources. Nevertheless, in cultures performed on sugar mixtures, the strains displayed a notable preference for Glc. Additionally, in sugar mixtures, the absence of regulatory mechanisms in sugar assimilation (e.g., catabolic repression) was observed and documented when the activities of several enzymes involved in sugar assimilation (i.e., phosphoglucose isomerase, phosphomannose isomerase, and xylulokinase) were determined. The activity of the key enzymes involved in the onset of lipid accumulation (i.e., NAD+-ICDH) and in fatty acid (FA) biosynthesis (i.e., ATP:CL) indicated a significant accumulation of storage lipids (i.e., up to 24%, w/w) containing oleic and palmitic acids as the major components. The present paper is the first report on the potential of M. guilliermondii, S. coipomensis, and S. paludigena as oleaginous yeasts. We conclude that the new isolates, being able to simultaneously assimilate the major lignocellulosic sugars and efficiently convert them into oily biomass, present a biotechnological potential which deserve further investigation.


Assuntos
Florestas , Lignina/metabolismo , Lipídeos/biossíntese , Açúcares/metabolismo , Leveduras/metabolismo , Eucalyptus/microbiologia , Pinus/microbiologia , Madeira/microbiologia , Leveduras/isolamento & purificação
6.
Carbohydr Polym ; 230: 115588, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887943

RESUMO

The morphology of cellulose nanofibrils (CNFs), the rheological characteristics of their dispersions, and the corresponding relationships, are fundamental for understanding the properties of the material. This work aims at understanding how the morphological characteristics of the CNFs affect the rheology of the dispersions in the dilute region and to establish a relationship between both properties. A strong relationship was observed between the intrinsic viscosity of the CNF dispersions and their aspect ratio, which can be correlated through the expression ρ[η]=0.051p1.85. When comparing the model obtained in this work to the wormlike chain model, it was possible to verify that these models are independent of the flexibility of the CNFs. Regarding the fibrillation process, the dynamic viscosity only reflects part of the behavior of the morphological properties of the CNFs and does not provide reliable data that would allow these characteristics to be inferred, while the intrinsic viscosity does allow this relationship.

7.
Biotechnol Bioeng ; 112(9): 1783-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25851426

RESUMO

Eucalyptus globulus wood was subjected to autohydrolysis pretreatment at different severity factors. The pretreated materials were enzymatically saccharified at a substrate load of 10% (w/v) using a cellulase enzyme complex. Around 82-95% of original glucans were retained in the pretreated material, and the enzymatic hydrolysis yields ranged from 58% to 90%. The chemical and structural changes in the pretreated materials were investigated by microscopic (SEM, LSCM) and spectroscopic (2D-HSQC NMR and FT-IR) techniques. 2D-NMR results showed a reduction in the amounts of ß-O-4 aryl-ether linkages and suggested the presence of newly condensed structures of lignin in the biomass pretreated at the more severe conditions. Furthermore, the microscopic analysis showed that lignin migrates out of the cell wall and re-deposits in certain regions of the fibers at the more severe conditions to form droplet-like structures and expose the cellulose surface. These changes improved the glucose yield up to 69%, on dry wood basis.


Assuntos
Celulose/química , Eucalyptus/química , Lignina/química , Madeira/química , Celulose/metabolismo , Hidrólise , Lignina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Madeira/metabolismo
8.
Carbohydr Polym ; 111: 797-805, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25037418

RESUMO

In this work the synthesis of hemicellulose-based hydrogels and their application for the removal of arsenic and chromium ions is described. In a first step O-acetyl galactoglucomannan (GGM) was subjected to a transesterification applying glycidyl methacrylate (GMA) for the synthesis of novel GGM macromonomers. Two distinguished and purified GGM fractions with molar mass of 7.1 and 28 kDa were used as starting materials. The resulting GGM macromonomers (GGM-MA) contained well-defined amounts of methacrylate groups as determined by (1)H NMR spectroscopy. Selected GGM-MA derivatives were consecutively applied as a crosslinker in the synthesis of tailored hydrogels using [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA) as monomer. The swelling rate of the hydrogels was determined and the coherence between the swelling rate and the hydrogel composition was examined. The morphology of the GGM-based hydrogels was analysed by SEM and the hydrogels revealed a high surface area and were assessed in respect to their ability to remove arsenate and chromate ions from aqueous solutions. The presented bio-based hydrogels are of high interest especially for the mining industries as a sustainable material for the treatment of their highly contaminated wastewaters.

9.
J Ind Microbiol Biotechnol ; 38(11): 1861-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21523448

RESUMO

During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85-95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.


Assuntos
Etanol/metabolismo , Eucalyptus/metabolismo , Madeira/metabolismo , Biocombustíveis , Celulases/metabolismo , Eucalyptus/química , Fermentação , Glucanos/metabolismo , Lignina/metabolismo , Água/química , Madeira/química , Xilanos/análise
10.
J Ind Microbiol Biotechnol ; 37(9): 893-900, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20480204

RESUMO

Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm(3)/g in control samples to 783 and 600 cm(3)/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5-10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50 degrees C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40 degrees C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.


Assuntos
Basidiomycota/metabolismo , Biotecnologia/métodos , Etanol/metabolismo , Lignina/metabolismo , Pinus/metabolismo , Madeira/metabolismo , Celulose/metabolismo , Fermentação , Hidrólise , Saccharomyces cerevisiae/metabolismo , Madeira/química
11.
J Ind Microbiol Biotechnol ; 35(11): 1323-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18712558

RESUMO

Ganoderma australe is a white-rot fungus that causes a selective wood biodelignification in some hardwoods found in the Chilean rainforest. Ceriporiopsis subvermispora is also a lignin-degrading fungus used in several biopulping studies. The enzymatic system responsible for lignin degradation in wood can also be used to degrade recalcitrant organic pollutants in liquid effluents. In this work, two strains of G. australe and one strain of C. subvermipora were comparatively evaluated in the biodegradation of ABTS and the dye Poly R-478 in liquid medium, and in the pretreatment of Eucalyptus globulus wood chips for further kraft biopulping. Laccase was detected in liquid and wood cultures with G. australe. Ceriporiopsis subvermispora produce laccase and manganese peroxidase when grown in liquid medium and only manganese peroxidase was detected during wood decay. ABTS was totally depleted by all strains after 8 days of incubation while Poly R-478 was degraded up to 40% with G. australe strains and up to 62% by C. subvermispora after 22 days of incubation. Eucalyptus globulus wood chips decayed for 15 days presented 1-6% of lignin loss and less than 2% of glucan loss. Kraft pulps with kappa number 15 were produced from biotreated wood chips with 2% less active alkali, with up to 3% increase in pulp yield and up to 20% less hexenuronic acids than pulps from undecayed control. Results showed that G. australe strains evaluated were not as efficient as C. subvermispora for dye and wood biodegradation, but could be used as a feasible alternative in biotechnological processes such as bioremediation and biopulping.


Assuntos
Biotecnologia/métodos , Coriolaceae/metabolismo , Recuperação e Remediação Ambiental/métodos , Ganoderma/metabolismo , Corantes/metabolismo , Coriolaceae/enzimologia , Proteínas Fúngicas/metabolismo , Ganoderma/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...