Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 6023-6033, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357114

RESUMO

Two-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < ℏω < 1.91 eV (wavelength 850 > λ > 650 nm) above the two-photon band gap Eg(QD)/2, and at a representative photon energy ℏω = 0.99 eV (λ = 1250 nm) below this gap. Two-photon excited photoluminescence (2PE-PL) spectra of nc-SiQDs with diameters d = 1.8 ± 0.2 nm and d = 2.3 ± 0.3 nm, each passivated with 1-dodecene and dispersed in toluene, are calibrated in strength against 2PE-PL from a known concentration of Rhodamine B dye in methanol. The 2PA cross section is observed to be smaller for the smaller diameter nanocrystals, and the onset of 2PA is observed to be blue shifted from the two-photon indirect band gap of bulk Si, as expected for quantum confinement of excitons. The efficiencies of nc-SiQDs for bioimaging using 2PE-PL are simulated in various biological tissues and compared to efficiencies of other quantum dots and molecular fluorophores and found to be comparable or superior at greater depths.


Assuntos
Nanopartículas , Pontos Quânticos , Silício/química , Pontos Quânticos/química , Fótons , Nanopartículas/química , Análise Espectral
2.
Opt Express ; 27(3): 3337-3353, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732356

RESUMO

We studied the second harmonic generation (SHG) by two-dimensional dielectric particles made of a centrosymmetric high-index material. The calculated scattered fields at the fundamental and harmonic frequencies are decomposed on a multipolar basis, allowing the evaluation of the relative strengths of the multipolar resonances excited at the particle. With these tools, we studied the strength of the multipoles that produce the second harmonic field and the role played by those excited at the fundamental frequency.

3.
J Phys Condens Matter ; 30(13): 135602, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29498359

RESUMO

Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green's function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called 'one-point model') that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green's function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.

4.
Phys Rev Lett ; 119(6): 067402, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949640

RESUMO

We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effective three-dimensional shift current (∼100 µA/V^{2}), larger than has been previously observed in other polar systems. Moreover, we show that the integral of the shift-current tensor is correlated to the large spontaneous effective three-dimensional electric polarization (∼1.9 C/m^{2}). Our calculations indicate that the shift current will be largest in the visible spectrum, suggesting that these monochalcogenides may be promising for polar optoelectronic devices. A Rice-Mele tight-binding model is used to rationalize the shift-current response for these systems, and its dependence on polarization, in general terms with implications for other polar materials.

5.
Opt Express ; 18(21): 22119-27, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941113

RESUMO

We present a very efficient recursive method to calculate the effective optical response of metamaterials made up of arbitrarily shaped inclusions arranged in periodic 3D arrays. We apply it to dielectric particles embedded in a metal matrix with a lattice constant much smaller than the wavelength of the incident field, so that we may neglect retardation and factor the geometrical properties from the properties of the materials. If the conducting phase is continuous the low frequency behavior is metallic, and if the conducting paths are thin, the high frequency behavior is dielectric. Thus, extraordinary-transparency bands may develop at intermediate frequencies, whose properties may be tuned by geometrical manipulation.


Assuntos
Nanocompostos/química , Óptica e Fotônica , Algoritmos , Luz , Manufaturas , Teste de Materiais , Metais/química , Modelos Estatísticos , Nanoestruturas/química , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...