Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38805245

RESUMO

Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host-pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Šresolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.

2.
Sci Total Environ ; 935: 173434, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782277

RESUMO

Freshwater ecosystems are highly vulnerable to the impacts of climate change, which affect both diversity and ecosystem functioning. Furthermore, these ecosystems face additional threats from human activities, such as changes in land use, leading to water pollution and habitat degradation. Intermittent streams represent nearly half of all fluvial systems and support a rich diversity adapted to cope with drying. This study examines the impact of drying and different land uses on the taxonomic and functional diversity of aquatic invertebrates in a Mediterranean intermittent stream network. By sampling 16 reaches seasonally, we hypothesised that longer dry-phase duration and agriculture would both reduce α-diversity, with drying dominating impacts on ß-diversity over agricultural practices. We anticipated that drying and agriculture would alter species and trait compositions, favouring desiccation-tolerant and generalist taxa. Drying adversely affected the taxonomic and functional α-diversity of aquatic invertebrates, while it positively influenced ß-diversity. Land use only affected α-diversity. Specifically, habitat heterogeneity and increased water nutrient levels within the stream network correlated positively with invertebrate diversity. However, the negative effects of drying were less pronounced in upstream forested regions with high habitat heterogeneity compared to downstream areas influenced by agriculture. Our research highlights the importance of preserving natural and forested streams in intermittent networks, particularly in headwater regions, thus facilitating recolonization when flow is restored throughout the stream network.

3.
Elife ; 122023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018500

RESUMO

The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Gα. Our data show that the binding of NCS-1 and Gα to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to casein kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A guanine nucleotide exchange factor (GEF) activity toward Gα when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.


Assuntos
Cálcio , Fatores de Troca do Nucleotídeo Guanina , Cálcio/metabolismo , Fosforilação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Chaperonas Moleculares/metabolismo
4.
Int J Biol Macromol ; 233: 123507, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754262

RESUMO

Lectins from fruiting bodies are a diverse group of sugar-binding proteins from mushrooms that face the biologically relevant challenge of discriminating self- from non-self carbohydrate structures, therefore providing a basis for an innate defence system. Such a system entails both detection and destruction of invaders and/or feeders, and in contrast to more complex organisms with immense immune systems, these two functions normally rely on multitasking lectins, namely, lectins with different functional modules. Here, we present a novel fungal lectin, LBL, from the basidiomycete Laccaria bicolor. Using a diverse set of biophysical techniques, we unveil the fine details of the sugar-binding specificity of the N-terminal ß-trefoil of LBL (LBL152), whose structure has been determined at the highest resolution so far reported for such a fold. LBL152 binds complex poly-N-Acetyllactosamine polysaccharides and also robust LBL152 binding to Caenorhabditis elegans and Drosophila melanogaster cellular extracts was detected in microarray assays, with a seeming preference for the fruit fly adult and pupa stages over the larva stage. Prediction of the structure of the C-terminal part of LBL with AlphaFold reveals a tandem repeat of two structurally almost identical domains of around 110 amino acids each, despite sharing low sequence conservation.


Assuntos
Basidiomycota , Lectinas , Micorrizas , Animais , Basidiomycota/metabolismo , Carboidratos/química , Drosophila melanogaster/metabolismo , Lectinas/química , Micorrizas/metabolismo , Açúcares
5.
Angew Chem Int Ed Engl ; 62(19): e202209252, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542681

RESUMO

Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Conformação Molecular , Mutação
6.
Sci Total Environ ; 859(Pt 2): 160374, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427710

RESUMO

Fungi are among the most abundant and diverse organisms on Earth and play pivotal roles in global carbon processing, nutrient cycling and food webs. Despite their abundant and functional importance, little is known about the patterns and mechanisms governing their community composition in intermittent rivers and ephemeral streams, which are the most common fluvial ecosystems globally. Thus far, it is known that aquatic fungi have evolved various life-history strategies and functional adaptations to cope with drying. Nevertheless, some of these adaptations have a metabolic cost and trade-offs between growth, reproduction and dispersion that may affect ecosystem functioning. Thus, understanding their ecological strategies along a gradient of drying is crucial to assess how species will respond to global change and to identify meaningful taxa to maintain ecosystem functions. By combining in situ hydrological information with a niche-based approach, we analysed the role of drying in explaining the spatial segregation of fungal species, and we determined their specialization and affinity over a gradient of drying. In addition, we estimated whether species niches are good predictors of two key ecosystem processes: organic matter decomposition and fungal biomass accrual. Overall, we found that annual drying duration and frequency were the most influential variables upon species niche differentiation across the 15 studied streams. Our cluster analysis identified four drying niche-based groups with contrasting distributions and responses over the drying gradient: drying-sensitive, partly tolerant to drying, generalist, and drying-resistant specialist. In addition, we found that species belonging to the drying specialist group showed a weak contribution to both ecosystem processes, suggesting trade-offs between drying resistance strategies and the energy invested in growth. Taken together, our results suggest that increased water scarcity may jeopardise the capacity of aquatic fungi to guarantee ecosystem functioning and to maintain biogeochemical cycles despite their ability to cope with drying.


Assuntos
Ecossistema , Fungos , Folhas de Planta/microbiologia , Rios/microbiologia , Cadeia Alimentar
7.
Int J Biol Macromol ; 223(Pt A): 1042-1053, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36370862

RESUMO

Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.


Assuntos
Bacteriófagos , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Streptococcus pneumoniae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriófagos/metabolismo , Parede Celular/metabolismo
8.
mSystems ; 7(2): e0145921, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35293791

RESUMO

Expediting drug discovery to fight antibacterial resistance requires holistic approaches at system levels. In this study, we focused on the human-adapted pathogen Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model, we rationally identified new metabolic drug targets in this organism. Contextualization of available gene essentiality data within in silico predictions identified most genes involved in lipid metabolism as promising targets. We focused on the ß-ketoacyl-acyl carrier protein synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis pathway and feedback inhibition. Docking studies provided a plausible three-dimensional model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory effect was independent of fabH gene expression levels. fabH allelic variation was observed among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as part of a complex multifactorial process with the overall metabolic context emerging as a key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria were not prone to develop resistance. Inhibitor administration during H. influenzae infection on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity. Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets, metabolic models as target-screening tools, and FASII targeting suitability to counteract this bacterial infection. IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful computational tools and experimental work to accelerate target identification and drug development. Here, we present a high-quality metabolic model of H. influenzae and show its usefulness both as a computational framework for large experimental data set contextualization and as a tool to discover condition-independent drug targets. We focus on ß-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic molecule with good synthetic and antimicrobial profiles that specifically binds to the active site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the strain-dependent effect of the inhibitor tested supports the impact of metabolic context as a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic metabolic evaluation of individual strains through computational frameworks to identify secondary metabolic hubs modulating drug response, which will facilitate establishing synergistic and/or more precise and robust antibacterial treatments.


Assuntos
Haemophilus influenzae , Metabolismo dos Lipídeos , Humanos , Animais , Peixe-Zebra , Antibacterianos/farmacologia , Bactérias , Redes e Vias Metabólicas
9.
Pharmaceutics ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834203

RESUMO

Lipid nanocarriers, such as niosomes, are considered attractive candidates for non-viral gene delivery due to their suitable biocompatibility and high versatility. In this work, we studied the influence of incorporating chloroquine in niosomes biophysical performance, as well as the effect of non-ionic surfactant composition and protocol of incorporation in their biophysical performance. An exhaustive comparative evaluation of three niosome formulations differing in these parameters was performed, which included the analysis of their thermal stability, rheological behavior, mean particle size, dispersity, zeta potential, morphology, membrane packing capacity, affinity to bind DNA, ability to release and protect the genetic material, buffering capacity and ability to escape from artificially synthesized lysosomes. Finally, in vitro biological studies were, also, performed in order to determine the compatibility of the formulations with biological systems, their transfection efficiency and transgene expression. Results revealed that the incorporation of chloroquine in niosome formulations improved their biophysical properties and the transfection efficiency, while the substitution of one of the non-ionic surfactants and the phase of addition resulted in less biophysical variations. Of note, the present work provides several biophysical parameters and characterization strategies that could be used as gold standard for gene therapy nanosystems evaluation.

10.
Front Microbiol ; 12: 740914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777288

RESUMO

We have structurally and functionally characterized Skl and Pal endolysins, the latter being the first endolysin shown to kill effectively Streptococcus pneumoniae, a leading cause of deathly diseases. We have proved that Skl and Pal are cysteine-amidases whose catalytic domains, from CHAP and Amidase_5 families, respectively, share an α3ß6-fold with papain-like topology. Catalytic triads are identified (for the first time in Amidase_5 family), and residues relevant for substrate binding and catalysis inferred from in silico models, including a calcium-binding site accounting for Skl dependence on this cation for activity. Both endolysins contain a choline-binding domain (CBD) with a ß-solenoid fold (homology modeled) and six conserved choline-binding loci whose saturation induced dimerization. Remarkably, Pal and Skl dimers display a common overall architecture, preserved in choline-bound dimers of pneumococcal lysins with other catalytic domains and bond specificities, as disclosed using small angle X-ray scattering (SAXS). Additionally, Skl is proved to be an efficient anti-pneumococcal agent that kills multi-resistant strains and clinical emergent-serotype isolates. Interestingly, Skl and Pal time-courses of pneumococcal lysis were sigmoidal, which might denote a limited access of both endolysins to target bonds at first stages of lysis. Furthermore, their DTT-mediated activation, of relevance for other cysteine-peptidases, cannot be solely ascribed to reversal of catalytic-cysteine oxidation.

11.
Acta Biomater ; 135: 534-542, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407472

RESUMO

The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.


Assuntos
Adenoviridae , Capsídeo , Adenoviridae/genética , Proteínas do Capsídeo , Humanos , Concentração de Íons de Hidrogênio , Vírion
12.
mBio ; 12(3): e0078921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154422

RESUMO

Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation. IMPORTANCE Human-adapted bacterial pathogens have evolved specific mechanisms to colonize their host niche. Phase variation is a contingency strategy to allow adaptation to changing conditions, as phase-variable bacterial loci rapidly and reversibly switch their expression. Several NTHi adhesins are phase variable. These adhesins are required for colonization but also immunogenic, in such a way that bacteria with lower adhesin levels are better equipped to survive an immune response, making their contribution to natural infections unclear. We show here that the major NTHi adhesin HMW1A displays allelic variation, which can drive a phase-variable epithelial hyperinvasion phenotype. Over time, hmw1A phase variation lowers adhesin expression, which controls an NTHi lifestyle switch from high epithelial invasiveness to lower invasion and higher biofilm formation. This reversible loss of function aligns with the previously stated notion that epithelial infection is essential for NTHi infection establishment, but once established, persistence favors gene inactivation, in this case facilitating biofilm growth.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Variação Genética , Genoma Bacteriano , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Adaptação Fisiológica/genética , Adesinas Bacterianas/classificação , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Biofilmes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Humanos , Regiões Promotoras Genéticas
13.
BMC Biol ; 19(1): 43, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706787

RESUMO

BACKGROUND: Amyloids are ordered, insoluble protein aggregates, characterized by a cross-ß sheet quaternary structure in which molecules in a ß-strand conformation are stacked along the filament axis via intermolecular interactions. While amyloids are typically associated with pathological conditions, functional amyloids have also been identified and are present in a wide variety of organisms ranging from bacteria to humans. The cytoplasmic polyadenylation element-binding (CPEB) prion-like protein is an mRNA-binding translation regulator, whose neuronal isoforms undergo activity-dependent aggregation, a process that has emerged as a plausible biochemical substrate for memory maintenance. CPEB aggregation is driven by prion-like domains (PLD) that are divergent in sequence across species, and it remains unknown whether such divergent PLDs follow a similar aggregating assembly pathway. Here, we describe the amyloid-like features of the neuronal Aplysia CPEB (ApCPEB) PLD and compare them to those of the Drosophila ortholog, Orb2 PLD. RESULTS: Using in vitro single-molecule and bulk biophysical methods, we find transient oligomers and mature amyloid-like filaments that suggest similarities in the late stages of the assembly pathway for both ApCPEB and Orb2 PLDs. However, while prior to aggregation the Orb2 PLD monomer remains mainly as a random coil in solution, ApCPEB PLD adopts a diversity of conformations comprising α-helical structures that evolve to coiled-coil species, indicating structural differences at the beginning of their amyloid assembly pathways. CONCLUSION: Our results indicate that divergent PLDs of CPEB proteins from different species retain the ability to form a generic amyloid-like fold through different assembly mechanisms.


Assuntos
Amiloide/metabolismo , Aplysia/metabolismo , Príons/metabolismo , Animais , Aplysia/química , Poliadenilação , Príons/química
14.
Proc Natl Acad Sci U S A ; 117(24): 13699-13707, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467158

RESUMO

Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Montagem de Vírus , Internalização do Vírus , Adenovírus Humanos/genética , Adenovírus Humanos/ultraestrutura , Microscopia Crioeletrônica , Humanos , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Domínios Proteicos
15.
Mol Pharm ; 17(6): 1848-1858, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293897

RESUMO

Gene therapy employing nanocarriers represents a promising strategy to treat central nervous system (CNS) diseases, where brain microvasculature is frequently compromised. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule; however, its in vivo administration to the CNS by nonviral gene therapy has not been conducted. Hence, we prepared and physicochemically characterized four cationic niosome formulations (1-4), which were combined with pVEGF-GFP to explore their capacity to transfer the VEGF gene to CNS cells and achieve angiogenesis in the brain. Experiments in primary neuronal cells showed successful and safe transfection with niosome 4, producing double levels of biologically active VEGF in comparison to the rest of the formulations. Intracortical administration of niosome 4 based nioplexes in mouse brain validated the ability of this nonviral vector to deliver the VEGF gene to CNS cells, inducing brain angiogenesis and emerging as a promising therapeutic approach for the treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Sistema Nervoso Central/patologia , Terapia Genética/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Feminino , Camundongos , Gravidez , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Chem Sci ; 12(2): 576-589, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163788

RESUMO

Endolysins are bacteriophage-encoded peptidoglycan hydrolases targeting the cell wall of host bacteria via their cell wall-binding domains (CBDs). The molecular basis for selective recognition of surface carbohydrate ligands by CBDs remains elusive. Here, we describe, in atomic detail, the interaction between the Listeria phage endolysin domain CBD500 and its cell wall teichoic acid (WTA) ligands. We show that 3'O-acetylated GlcNAc residues integrated into the WTA polymer chain are the key epitope recognized by a CBD binding cavity located at the interface of tandem copies of beta-barrel, pseudo-symmetric SH3b-like repeats. This cavity consists of multiple aromatic residues making extensive interactions with two GlcNAc acetyl groups via hydrogen bonds and van der Waals contacts, while permitting the docking of the diastereomorphic ligands. Our multidisciplinary approach tackled an extremely challenging protein-glycopolymer complex and delineated a previously unknown recognition mechanism by which a phage endolysin specifically recognizes and targets WTA, suggesting an adaptable model for regulation of endolysin specificity.

17.
Sci Total Environ ; 703: 135485, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761375

RESUMO

The microbial decomposition of organic matter is a fundamental ecosystem process that transforms organic matter and fuels detritus-based food webs, influencing biogeochemical cycles such as C-cycling. The efficiency of this process can be compromised during the non-flow periods of intermittent and ephemeral streams (IRES). When water flow ceases, sediments represent the last wet habitat available to microorganisms and may play an important role in sustaining microbial decomposition. However, despite the increasing prevalence of IRES due to climate change and water abstraction, it is unclear to what degree the subsurface habitat can sustain microbial decomposition during non-flow periods. In order to gather information, we selected 20 streams across Catalonia (Spain) along a gradient of flow intermittency, where we measured microbial decomposition and fungal biomass by placing wood sticks in both the surface and subsurface zones (15 cm below the streambed) over the course of one hydrological year. Our results showed that microbial decomposition and fungal biomass were consistently greater in the subsurface zone than in the surface zone, when intermittency increased. Although flow intermittency was the main driver of both microbial decomposition and fungal biomass, phosphorus availability in the water, sediment C:N ratio and sediment grain size also played relevant roles in surface and subsurface organic matter processing. Thus, our findings demonstrate that although the OM processing in both zones decreases with increased intermittency, the subsurface zone made an important contribution during the non-flow periods in IRES. Therefore, subsurface activity during non-flow periods has the potential to affect and maintain ecosystem functioning.


Assuntos
Biodegradação Ambiental , Ecossistema , Rios/microbiologia , Microbiologia da Água , Fungos , Fósforo , Folhas de Planta , Espanha
18.
Biomolecules ; 9(12)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861238

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin's effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quercetina/farmacologia , Células A549 , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cistus/química , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Humanos , Imunomodulação/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/microbiologia , Quercetina/química , Quercetina/isolamento & purificação , Células Tumorais Cultivadas , Peixe-Zebra
19.
Nanomedicine ; 17: 308-318, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30790710

RESUMO

Low transfection efficiency is a major challenge to overcome in non-viral approaches to reach clinical practice. Our aim was to explore new strategies to achieve more efficient non-viral gene therapies for clinical applications and in particular, for retinal diseases. Cationic niosomes and three GFP-encoding genetic materials consisting on minicircle (2.3 kb), its parental plasmid (3.5 kb) and a larger plasmid (5.5 kb) were combined to form nioplexes. Once fully physicochemically characterized, in vitro experiments in ARPE-19 retina epithelial cells showed that transfection efficiency of minicircle nioplexes doubled that of plasmids ones, maintaining good cell viability in all cases. Transfections in retinal primary cells and injections of nioplexes in rat retinas confirmed the higher capacity of cationic niosomes vectoring minicircle to deliver the genetic material into retina cells. Therefore, nioplexes based on cationic niosomes vectoring minicircle DNA represent a potential tool for the treatment of inherited retinal diseases.


Assuntos
Vetores Genéticos/administração & dosagem , Lipossomos/química , Doenças Retinianas/terapia , Transfecção/métodos , Animais , Cátions/química , Linhagem Celular , Células Cultivadas , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Lipídeos/química , Masculino , Compostos de Amônio Quaternário/química , Ratos Sprague-Dawley , Retina/citologia , Retina/metabolismo , Doenças Retinianas/genética , Esqualeno/química
20.
Front Microbiol ; 10: 2909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010066

RESUMO

Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed. A main advantage of the microarray format is the inherent miniaturization of the method, which allows sensitive and high-throughput analyses with very small amounts of sample. Antibody and lectin microarrays have been used for examining bacterial glycosignatures, enabling bacteria identification and differentiation among strains. In addition, microarrays incorporating bacterial carbohydrate structures have served to evaluate their recognition by diverse host/phage/bacterial glycan-binding proteins, such as lectins, effectors of the immune system, or bacterial and phagic cell wall lysins, and to identify antigenic determinants for vaccine development. The list of samples printed in the arrays includes polysaccharides, lipopoly/lipooligosaccharides, (lipo)teichoic acids, and peptidoglycans, as well as sequence-defined oligosaccharide fragments. Moreover, microarrays of cell wall fragments and entire bacterial cells have been developed, which also allow to study bacterial glycosylation patterns. In this review, examples of the different microarray platforms and applications are presented with a view to give the current state-of-the-art and future prospects in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...