Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 88(7): 3211-3221, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35072287

RESUMO

AIMS: Filgotinib is a potent, oral, JAK1-preferential inhibitor for the treatment of rheumatoid arthritis (RA). This report describes exposure-response (ER) analyses of filgotinib for dose confirmation based on three phase 3 and two phase 2 studies in moderate to severe RA patients. METHODS: The pharmacokinetic exposures used in ER analyses were derived from population pharmacokinetic analysis. The exposure-efficacy relationships were assessed for efficacy endpoints (ACR20/50/70 and DAS28) over effective area under curve (AUCeff ), the combined exposures of filgotinib and GS-829845 (major, active metabolite), with nonlinear logistic regression models developed. Also, a t-test was performed to compare the exposure between subjects who achieved response and those who did not. For the ER analyses of safety, exposures were examined between subjects who experienced and who did not experience the evaluated safety events, which was conducted separately for filgotinib and GS-829845. RESULTS: The nonlinear logistic regression showed increasing response with increasing exposure, with exposures at 200 mg dose primarily residing on the curve plateau. Also, AUCeff was significantly higher in the subjects who achieved responses compared to those who did not (10 900 vs 9900 h*ng/mL for ACR20, P value < .0001). For exposure-safety analyses, filgotinib and GS-829845 exposures were similar irrespective of the presence/absence of the evaluated safety endpoints, indicating no exposure-safety relationship for common treatment-emergent adverse events (TEAEs)/laboratory abnormalities and serious TEAEs/infections. CONCLUSIONS: ER analyses confirmed that filgotinib produced more robust therapeutic effects across the exposure range observed at 200 mg once daily compared to lower doses, and collectively with the lack of exposure-safety relationship, the 200 mg once daily dose was supported for commercialization.


Assuntos
Artrite Reumatoide , Piridinas , Triazóis , Antirreumáticos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Humanos , Inibidores de Janus Quinases/efeitos adversos , Piridinas/efeitos adversos , Resultado do Tratamento , Triazóis/efeitos adversos
2.
Clin Pharmacol Ther ; 111(2): 416-424, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34623640

RESUMO

Tirabrutinib is an irreversible, small-molecule Bruton's tyrosine kinase (BTK) inhibitor, which was approved in Japan (VELEXBRU) to treat B-cell malignancies and is in clinical development for inflammatory diseases. As an application of model-informed drug development, a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for irreversible BTK inhibition of tirabrutinib was developed to support dose selection in clinical development, based on clinical PK and BTK occupancy data from two phase I studies with a wide range of PK exposures in healthy volunteers and in subjects with rheumatoid arthritis. The developed model adequately described and predicted the PK and PD data. Overall, the model-based simulation supported a total daily dose of at least 40 mg, either q.d. or b.i.d., with adequate BTK occupancy (> 90%) for further development in inflammatory diseases. Following the PK/PD modeling and simulation, the relationship between model-predicted BTK occupancy and preliminary clinical efficacy data was also explored and a positive trend was identified between the increasing time above adequate BTK occupancy and better efficacy in treatment for RA by linear regression.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Anti-Inflamatórios/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Imidazóis/administração & dosagem , Modelos Biológicos , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Adolescente , Adulto , Tirosina Quinase da Agamaglobulinemia/metabolismo , Anti-Inflamatórios/farmacocinética , Artrite Reumatoide/enzimologia , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Imidazóis/farmacocinética , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518230

RESUMO

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2 However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.


Assuntos
Metilação de DNA/genética , Células-Tronco Embrionárias/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Desenvolvimento Embrionário/genética , Camundongos , Trofoblastos/fisiologia , DNA Metiltransferase 3B
4.
Cell Stem Cell ; 28(6): 1040-1056.e6, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33831366

RESUMO

Classic embryological experiments have established that the early mouse embryo develops via sequential lineage bifurcations. The first segregated lineage is the trophectoderm, essential for blastocyst formation. Mouse naive epiblast and derivative embryonic stem cells are restricted accordingly from producing trophectoderm. Here we show, in contrast, that human naive embryonic stem cells readily make blastocyst trophectoderm and descendant trophoblast cell types. Trophectoderm was induced rapidly and efficiently by inhibition of ERK/mitogen-activated protein kinase (MAPK) and Nodal signaling. Transcriptome comparison with the human embryo substantiated direct formation of trophectoderm with subsequent differentiation into syncytiotrophoblast, cytotrophoblast, and downstream trophoblast stem cells. During pluripotency progression lineage potential switches from trophectoderm to amnion. Live-cell tracking revealed that epiblast cells in the human blastocyst are also able to produce trophectoderm. Thus, the paradigm of developmental specification coupled to lineage restriction does not apply to humans. Instead, epiblast plasticity and the potential for blastocyst regeneration are retained until implantation.


Assuntos
Blastocisto , Camadas Germinativas , Animais , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos
5.
Ann Rheum Dis ; 80(7): 865-875, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741556

RESUMO

OBJECTIVE: Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. METHODS: In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. RESULTS: JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. CONCLUSION: Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.


Assuntos
Antirreumáticos/farmacologia , Citocinas/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Janus Quinases/efeitos dos fármacos , Piridinas/farmacologia , Triazóis/farmacologia , Artrite Reumatoide , Azetidinas/farmacologia , Células Cultivadas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Piperidinas/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia
6.
J Hepatol ; 71(4): 660-665, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195062

RESUMO

BACKGROUND & AIMS: Although off-label use of sofosbuvir-containing regimens occurs regularly in patients with hepatitis C virus (HCV) infection undergoing dialysis for severe renal impairment or end-stage renal disease (ESRD), these regimens are not licensed for this indication, and there is an absence of dosing recommendations in this population. This study evaluated the safety and efficacy of sofosbuvir/velpatasvir in patients with HCV infection with ESRD undergoing dialysis. METHODS: In this phase II, single-arm study, 59 patients with genotype 1-6 HCV infection with ESRD undergoing hemodialysis or peritoneal dialysis received open-label sofosbuvir/velpatasvir (400 mg/100 mg) once daily for 12 weeks. Patients were HCV treatment naive or treatment experienced without cirrhosis or with compensated cirrhosis. Patients previously treated with any HCV NS5A inhibitor were not eligible. The primary efficacy endpoint was the proportion of patients achieving sustained virologic response (SVR) 12 weeks after discontinuation of treatment (SVR12). The primary safety endpoint was the proportion of patients who discontinued study drug due to adverse events. RESULTS: Overall, 56 of 59 patients achieved SVR12 (95%; 95% CI 86-99%). Of the 3 patients who did not achieve SVR12, 2 patients had virologic relapse determined at post-treatment Week 4 (including 1 who prematurely discontinued study treatment), and 1 patient died from suicide after achieving SVR through post-treatment Week 4. The most common adverse events were headache (17%), fatigue (14%), nausea (14%), and vomiting (14%). Serious adverse events were reported for 11 patients (19%), and all were deemed to be unrelated to sofosbuvir/velpatasvir. CONCLUSIONS: Treatment with sofosbuvir/velpatasvir for 12 weeks was safe and effective in patients with ESRD undergoing dialysis. LAY SUMMARY: Sofosbuvir/velpatasvir is a combination direct-acting antiviral that is approved for treatment of patients with hepatitis C virus (HCV) infection. Despite the lack of dosing recommendations, sofosbuvir-containing regimens (including sofosbuvir/velpatasvir) are frequently used for HCV-infected patients undergoing dialysis. This study evaluated the safety and efficacy of sofosbuvir/velpatasvir for 12 weeks in patients with HCV infection who were undergoing dialysis. Treatment with sofosbuvir/velpatasvir was safe and well tolerated, resulting in a cure rate of 95% in patients with HCV infection and end-stage renal disease. Clinical Trial Number: NCT03036852.


Assuntos
Carbamatos , Hepatite C Crônica , Compostos Heterocíclicos de 4 ou mais Anéis , Falência Renal Crônica , Diálise Renal/métodos , Sofosbuvir , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Carbamatos/administração & dosagem , Carbamatos/efeitos adversos , Combinação de Medicamentos , Monitoramento de Medicamentos/métodos , Feminino , Hepacivirus/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Cirrose Hepática/diagnóstico , Masculino , Pessoa de Meia-Idade , Sofosbuvir/administração & dosagem , Sofosbuvir/efeitos adversos , Resposta Viral Sustentada , Resultado do Tratamento
7.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30482756

RESUMO

During differentiation and reprogramming, new cell identities are generated by reconfiguration of gene regulatory networks. Here, we combined automated formal reasoning with experimentation to expose the logic of network activation during induction of naïve pluripotency. We find that a Boolean network architecture defined for maintenance of naïve state embryonic stem cells (ESC) also explains transcription factor behaviour and potency during resetting from primed pluripotency. Computationally identified gene activation trajectories were experimentally substantiated at single-cell resolution by RT-qPCR Contingency of factor availability explains the counterintuitive observation that Klf2, which is dispensable for ESC maintenance, is required during resetting. We tested 124 predictions formulated by the dynamic network, finding a predictive accuracy of 77.4%. Finally, we show that this network explains and predicts experimental observations of somatic cell reprogramming. We conclude that a common deterministic program of gene regulation is sufficient to govern maintenance and induction of naïve pluripotency. The tools exemplified here could be broadly applied to delineate dynamic networks underlying cell fate transitions.


Assuntos
Autorrenovação Celular/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/fisiologia , Redes Reguladoras de Genes/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Células Cultivadas , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/fisiologia , Células-Tronco Pluripotentes/fisiologia
8.
J Clin Pharmacol ; 58(8): 1025-1034, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29663420

RESUMO

Respiratory syncytial virus (RSV)-associated respiratory tract infection is a leading cause of hospitalizations in infants for which no effective treatment exists. RSV infection is also an important cause of respiratory disease in adults and immunocompromised patients. Presatovir (GS-5806) is an orally bioavailable antiviral agent that inhibits fusion of RSV with host cell membranes. Here, results from 2 phase 1 studies that evaluated safety, tolerability, and pharmacokinetics of presatovir in healthy adults following administration of single and multiple (7 days) once- or twice-daily ascending doses (first-in-human study) and in the presence or absence of food (food effect study) are described. Presatovir exhibited favorable safety and pharmacokinetic profiles that supported once-daily dosing. Presatovir exposure increased in an approximately dose-proportional manner across the evaluated dose range (single doses 25-300 mg; multiple doses 10-75 mg once daily for 7 days). Administration of presatovir with a high-fat meal did not alter exposure, supporting administration without regard to a meal in further clinical studies. These data were subsequently used to inform presatovir dosing regimens in a phase 2a challenge study of adults experimentally infected with RSV. Collectively, results from phase 1 evaluations and a phase 2a challenge study support further clinical investigation of presatovir for the treatment of RSV infection.

9.
Elife ; 62017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820723

RESUMO

Execution of pluripotency requires progression from the naïve status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naïve pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naïve pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations.


Assuntos
Diferenciação Celular , Metilação de DNA , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Deleção de Genes , Camundongos , RNA Longo não Codificante/genética , DNA Metiltransferase 3B
10.
Nat Genet ; 49(5): 730-741, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28319090

RESUMO

The overwhelming number of genetic alterations identified through cancer genome sequencing requires complementary approaches to interpret their significance and interactions. Here we developed a novel whole-body insertional mutagenesis screen in mice, which was designed for the discovery of Pten-cooperating tumor suppressors. Toward this aim, we coupled mobilization of a single-copy inactivating Sleeping Beauty transposon to Pten disruption within the same genome. The analysis of 278 transposition-induced prostate, breast and skin tumors detected tissue-specific and shared data sets of known and candidate genes involved in cancer. We validated ZBTB20, CELF2, PARD3, AKAP13 and WAC, which were identified by our screens in multiple cancer types, as new tumor suppressor genes in prostate cancer. We demonstrated their synergy with PTEN in preventing invasion in vitro and confirmed their clinical relevance. Further characterization of Wac in vivo showed obligate haploinsufficiency for this gene (which encodes an autophagy-regulating factor) in a Pten-deficient context. Our study identified complex PTEN-cooperating tumor suppressor networks in different cancer types, with potential clinical implications.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Supressores de Tumor , Mutagênese Insercional , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Animais , Linhagem Celular , Movimento Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Dosagem de Genes , Predisposição Genética para Doença/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Knockout , Camundongos Transgênicos , Mutação , Próstata/citologia , Próstata/metabolismo , Interferência de RNA , Transdução de Sinais/genética
11.
Mol Cell Biol ; 33(7): 1317-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358416

RESUMO

The DNA transposon piggyBac is widely used as a tool in mammalian experimental systems for transgenesis, mutagenesis, and genome engineering. We have characterized genome-wide insertion site preferences of piggyBac by sequencing a large set of integration sites arising from transposition from two separate genomic loci and a plasmid donor in mouse embryonic stem cells. We found that piggyBac preferentially integrates locally to the excision site when mobilized from a chromosomal location and identified other nonlocal regions of the genome with elevated insertion frequencies. piggyBac insertions were associated with expressed genes and markers of open chromatin structure and were excluded from heterochromatin. At the nucleotide level, piggyBac prefers to insert into TA-rich regions within a broader GC-rich context. We also found that piggyBac can insert into sites other than its known TTAA insertion site at a low frequency (2%). Such insertions introduce mismatches that are repaired with signatures of host cell repair pathways. Transposons could be mobilized from plasmids with the observed noncanonical flanking regions, indicating that piggyBac could generate point mutations in the genome.


Assuntos
Elementos de DNA Transponíveis , Loci Gênicos , Genoma , Mutagênese Insercional , Mutação Puntual , Animais , Células Cultivadas , Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Camundongos , Plasmídeos/genética
12.
Bioessays ; 34(8): 670-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22674461

RESUMO

Emerging evidence suggests that microRNA (miRNA)-mediated post-transcriptional gene regulation plays an essential role in modulating embryonic stem (ES) cell pluripotency maintenance, differentiation, and reprogramming of somatic cells to an ES cell-like state. Investigations from ES cell-enriched miRNAs, such as mouse miR-290 cluster and human miR-302 cluster, and ES cell-depleted miRNAs such as let-7 family miRNAs, revealed a common theme that miRNAs target diverse cellular processes including cell cycle regulators, signaling pathway effectors, transcription factors, and epigenetic modifiers and shape their protein output. The combinatorial effects downstream of miRNA action allow miRNAs to modulate cell-fate decisions effectively. Furthermore, the transcription and biogenesis of miRNAs are also tightly regulated. Thus, elucidating the interplay between miRNAs and other modes of gene regulation will shed new light on the biology of pluripotent stem cells and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/citologia , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Ciclo Celular , Diferenciação Celular , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
13.
Nucleic Acids Res ; 40(3): e21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22127858

RESUMO

Obtaining random homozygous mutants in mammalian cells for forward genetic studies has always been problematic due to the diploid genome. With one mutation per cell, only one allele of an autosomal gene can be disrupted, and the resulting heterozygous mutant is unlikely to display a phenotype. In cells with a genetic background deficient for the Bloom's syndrome helicase, such heterozygous mutants segregate homozygous daughter cells at a low frequency due to an elevated rate of crossover following mitotic recombination between homologous chromosomes. We constructed DNA vectors that are selectable based on their copy number and used these to isolate these rare homozygous mutant cells independent of their phenotype. We use the piggyBac transposon to limit the initial mutagenesis to one copy per cell, and select for cells that have increased the transposon copy number to two or more. This yields homozygous mutants with two allelic mutations, but also cells that have duplicated the mutant chromosome and become aneuploid during culture. On average, 26% of the copy number gain events occur by the mitotic recombination pathway. We obtained homozygous cells from 40% of the heterozygous mutants tested. This method can provide homozygous mammalian loss-of-function mutants for forward genetic applications.


Assuntos
Células-Tronco Embrionárias , Homozigoto , Mutagênese Insercional/métodos , Mutação , Aneuploidia , Animais , Sequência de Bases , Separação Celular , Células Cultivadas , Elementos de DNA Transponíveis , Resistência a Medicamentos/genética , Loci Gênicos , Vetores Genéticos , Perda de Heterozigosidade , Camundongos , Dados de Sequência Molecular , Mutagênese
14.
Nucleic Acids Res ; 39(22): e148, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948799

RESUMO

The development of technologies that allow the stable delivery of large genomic DNA fragments in mammalian systems is important for genetic studies as well as for applications in gene therapy. DNA transposons have emerged as flexible and efficient molecular vehicles to mediate stable cargo transfer. However, the ability to carry DNA fragments >10 kb is limited in most DNA transposons. Here, we show that the DNA transposon piggyBac can mobilize 100-kb DNA fragments in mouse embryonic stem (ES) cells, making it the only known transposon with such a large cargo capacity. The integrity of the cargo is maintained during transposition, the copy number can be controlled and the inserted giant transposons express the genomic cargo. Furthermore, these 100-kb transposons can also be excised from the genome without leaving a footprint. The development of piggyBac as a large cargo vector will facilitate a wider range of genetic and genomic applications.


Assuntos
Elementos de DNA Transponíveis , Vetores Genéticos , Genoma , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Loci Gênicos , Humanos , Hidrolases/genética , Camundongos
16.
Proc Natl Acad Sci U S A ; 108(4): 1531-6, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205896

RESUMO

DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.


Assuntos
Elementos de DNA Transponíveis/genética , Células-Tronco Embrionárias/metabolismo , Mutagênese Insercional , Transposases/metabolismo , Processamento Alternativo/genética , Animais , Células Cultivadas , Hibridização Genômica Comparativa , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Genoma/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Genéticos , Mariposas/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transposases/genética
17.
Science ; 330(6007): 1104-7, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20947725

RESUMO

Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.


Assuntos
Elementos de DNA Transponíveis , Genes Neoplásicos , Testes Genéticos/métodos , Mutagênese Insercional , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Oncogenes , Regiões Promotoras Genéticas
18.
Methods Enzymol ; 477: 217-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699144

RESUMO

Mouse embryonic stem (ES) cells are an attractive model system for investigating mammalian biology. Their relatively stable genome and high amenability to genome modification enables the generation of large-scale mutant libraries, which can be subsequently used for phenotype-driven genetic screens. While retroviral vectors have traditionally been used to generate insertional mutations in ES cells, their severe distribution-bias in the mammalian genome substantially limits genome-wide mutagenesis. The recent development of the DNA transposon piggyBac offers an efficient and highly versatile alternative for achieving more unbiased mutagenesis. Furthermore, heterozygous mutations created by insertional mutagens can be converted in parallel to homozygosity by using Blm-deficient ES cells, allowing genome-wide loss-of-function screens to be conducted. In this chapter, we describe the principles underpinning genetic screens in mouse ES cells with examples of previously successful screens. Protocols are provided for piggyBac transposon-mediated mutagenesis, production of the corresponding homozygous mutants in a Blm-deficient genetic background, and methods for mapping and validation of mutations recovered from screens of such libraries.


Assuntos
Células-Tronco Embrionárias/metabolismo , Mutagênese/genética , Animais , Vetores Genéticos , Camundongos
19.
Nat Methods ; 6(6): 415-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19478801

RESUMO

Transposable elements are DNA segments with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for genome manipulation. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field suggests that transposable elements will serve as indispensable tools. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. In addition, transposons will gain importance in future cell-based clinical applications, including nonviral gene transfer into stem cells and the rapidly developing field of induced pluripotent stem cells. Here we provide an overview of transposon-based methods used in vertebrate model organisms with an emphasis on the mouse system and highlight the most important considerations concerning genetic applications of the transposon systems.


Assuntos
Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Genoma/genética , Camundongos Transgênicos/genética , Vertebrados/genética , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...