Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1294396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606110

RESUMO

Objective: This study aimed to analyze the independent risk factors for marginal positivity after radical prostatectomy and to evaluate the clinical value of the predictive model based on Bayesian network analysis. Methods: We retrospectively analyzed the clinical data from 238 patients who had undergone radical prostatectomy, between June 2018 and May 2022. The general clinical data, prostate specific antigen (PSA)-derived indicators, puncture factors, and magnetic resonance imaging (MRI) characteristics were included as predictive variables, and univariate and multivariate analyses were conducted. We established a nomogram model based on the independent predictors and adopted BayesiaLab software to generate tree-augmented naive (TAN) and naive Bayesian models based on 15 predictor variables. Results: Of the 238 patients included in the study, 103 exhibited positive surgical margins. Univariate analysis revealed that PSA density (PSAD) (P = 0.02), Gleason scores for biopsied tissue (P = 0.002) and the ratio of positive biopsy cores (P < 0.001), preoperative T staging (P < 0.001), and location of abnormal signals (P = 0.002) and the side of the abnormal signal (P = 0.009) were all statistically significant. The area under curve (AUC) of the established nomogram model based on independent predictors was 73.80%, the AUC of the naive Bayesian model based on 15 predictors was 82.71%, and the AUC of the TAN Bayesian model was 80.80%. Conclusion: The predictive model of positive resection margin after radical prostatectomy based on Bayesian network demonstrated high accuracy and usefulness.

2.
Front Aging Neurosci ; 15: 1277731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035272

RESUMO

Introduction: Alzheimer's disease (AD) is a complex neurodegenerative disease with high heritability. Compared to autosomes, a higher proportion of disorder-associated genes on X chromosome are expressed in the brain. However, only a few studies focused on the identification of the susceptibility loci for AD on X chromosome. Methods: Using the data from the Alzheimer's Disease Neuroimaging Initiative Study, we conducted an X chromosome-wide association study between 16 AD quantitative biomarkers and 19,692 single nucleotide polymorphisms (SNPs) based on both the cross-sectional and longitudinal studies. Results: We identified 15 SNPs statistically significantly associated with different quantitative biomarkers of the AD. For the cross-sectional study, six SNPs (rs5927116, rs4596772, rs5929538, rs2213488, rs5920524, and rs5945306) are located in or near to six genes DMD, TBX22, LOC101928437, TENM1, SPANXN1, and ZFP92, which have been reported to be associated with schizophrenia or neuropsychiatric diseases in literature. For the longitudinal study, four SNPs (rs4829868, rs5931111, rs6540385, and rs763320) are included in or near to two genes RAC1P4 and AFF2, which have been demonstrated to be associated with brain development or intellectual disability in literature, while the functional annotations of other five novel SNPs (rs12157031, rs428303, rs5953487, rs10284107, and rs5955016) have not been found. Discussion: 15 SNPs were found statistically significantly associated with the quantitative biomarkers of the AD. Follow-up study in molecular genetics is needed to verify whether they are indeed related to AD. The findings in this article expand our understanding of the role of the X chromosome in exploring disease susceptibility, introduce new insights into the molecular genetics behind the AD, and may provide a mechanistic clue to further AD-related studies.

3.
Comput Intell Neurosci ; 2022: 7396185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110914

RESUMO

Adaptable methods for representing higher-order data with various features and high dimensionality have been demanded by the increasing usage of multi-sensor technologies and the emergence of large data sets. Arrays of multi-dimensional data, known as tensors, can be found in a variety of applications. Standard data that depicts things from a single point of view lacks the semantic richness, utility, and complexity of multi-dimensional data. Research into multi-clustering has taken off since traditional clustering methods are unable to handle large datasets. There are three main kinds of multi-clustering algorithms: Self-weighted Multiview Clustering (SwMC), Latent Multi-view Subspace Clustering (LMSC), and Multi-view Subspace Clustering with Intactness-Aware Similarity (MSC IAS) that are explored in this paper. To evaluate their performance, we do in-depth tests on seven real-world datasets. The three most important metrics Accuracy (ACC), normalized mutual information (NMI), and purity are grouped. Furthermore, traditional Principal Component Analysis (PCA) cannot uncover hidden components within multi-dimensional data. For this purpose, tensor decomposition algorithms have been presented that are flexible in terms of constraint selection and extract more broad latent components. In this examination, we also go through the various tensor decomposition methods, with an emphasis on the issues that classical PCA is designed to solve. Various tensor models are also tested for dimensionality reduction and supervised learning applications in the experiments presented here.


Assuntos
Algoritmos , Análise por Conglomerados , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA