Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614818

RESUMO

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by introducing base substitutions into antibody genes, a process enabling antibody affinity maturation in immune response. How a mutator is tamed to precisely and safely generate programmed DNA lesions in a physiological process remains unsettled, as its dysregulation drives lymphomagenesis. Recent research has revealed several hidden features of AID-initiated mutagenesis: preferential activity on flexible DNA substrates, restrained activity within chromatin loop domains, unique DNA repair factors to differentially decode AID-caused lesions, and diverse consequences of aberrant deamination. Here, we depict the multifaceted regulation of AID activity with a focus on emerging concepts/factors and discuss their implications for the design of base editors (BEs) that install somatic mutations to correct deleterious genomic variants.

2.
Cell Mol Immunol ; 21(4): 412-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538700
3.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423014

RESUMO

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Assuntos
Cromatina , Proteínas Nucleares , Animais , Cromatina/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , Reparo do DNA por Junção de Extremidades , Histonas/genética , Histonas/metabolismo , Pareamento Cromossômico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
4.
Trends Immunol ; 45(3): 167-176, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38402044

RESUMO

Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.


Assuntos
Genes de Imunoglobulinas , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Hipermutação Somática de Imunoglobulina/genética , Mutação , DNA , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
5.
Nat Cell Biol ; 26(2): 294-304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263276

RESUMO

Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency 'stochastic' byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts. Imperfect DSB end-joining leads to small deletions via end-resection, templated insertions or aberrant transversions during end fill-in. Chromosomal translocations were detected between the editing target and off-targets of Cas9/deaminase origin. Genetic screenings of DNA repair factors disclosed a central role of abasic site processing in DSB formation. Shielding of abasic sites by the suicide enzyme HMCES reduced CGBE-initiated DSBs, providing an effective way to minimize DSB-triggered events without affecting substitutions. This work demonstrates that CGBEs can initiate deleterious intermediate DSBs and therefore require careful consideration for therapeutic applications, and that HMCES-aided CGBEs hold promise as safer tools.


Assuntos
Ácidos Alcanossulfônicos , Quebras de DNA de Cadeia Dupla , Translocação Genética , Humanos , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Sistemas CRISPR-Cas
6.
STAR Protoc ; 4(4): 102602, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742176

RESUMO

Cytidine deaminases as DNA mutators play important roles in immunity and genome stability. Here, we present a high-throughput protocol for deamination of long single-stranded (ss) DNA or oligo pools containing complex sequences. We describe steps for the preparation of both enzyme (activation-induced deaminase, AID) and ssDNA substrates, the deamination reaction, uracil-friendly amplification, and data analysis. This assay can be used to determine the intrinsic mutation profile of a single antibody gene or a pool of selected regions on genomic DNA. For complete details on the use and execution of this protocol, please refer to Wang et al. (2023).1.


Assuntos
DNA de Cadeia Simples , DNA , DNA de Cadeia Simples/genética , Desaminação , Mutação , DNA/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
7.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098343

RESUMO

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Anticorpos/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA de Cadeia Simples , Mutação , Evolução Molecular , Regiões Determinantes de Complementaridade/genética , Motivos de Nucleotídeos
8.
Leukemia ; 37(6): 1204-1215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095208

RESUMO

Mismatch repair (MMR) deficiency has been linked to thiopurine resistance and hypermutation in relapsed acute lymphoblastic leukemia (ALL). However, the repair mechanism of thiopurine-induced DNA damage in the absence of MMR remains unclear. Here, we provide evidence that DNA polymerase ß (POLB) of base excision repair (BER) pathway plays a critical role in the survival and thiopurine resistance of MMR-deficient ALL cells. In these aggressive resistant ALL cells, POLB depletion and its inhibitor oleanolic acid (OA) treatment result in synthetic lethality with MMR deficiency through increased cellular apurinic/apyrimidinic (AP) sites, DNA strand breaks and apoptosis. POLB depletion increases thiopurine sensitivities of resistant cells, and OA synergizes with thiopurine to kill these cells in ALL cell lines, patient-derived xenograft (PDX) cells and xenograft mouse models. Our findings suggest BER and POLB's roles in the process of repairing thiopurine-induced DNA damage in MMR-deficient ALL cells, and implicate their potentials as therapeutic targets against aggressive ALL progression.


Assuntos
DNA Polimerase beta , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Camundongos , Dano ao DNA , DNA Polimerase beta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mutações Sintéticas Letais , Reparo de Erro de Pareamento de DNA/genética
9.
Sci Immunol ; 8(81): eade1167, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36961908

RESUMO

Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.


Assuntos
Genes de Imunoglobulinas , Mutação INDEL , Animais , Camundongos , Mutação , Reparo do DNA/genética , DNA/genética
11.
EMBO J ; 41(11): e109324, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471583

RESUMO

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Assuntos
Citidina Desaminase , Switching de Imunoglobulina , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Humanos , Switching de Imunoglobulina/genética
12.
ACS Chem Biol ; 17(4): 768-775, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302367

RESUMO

The development of a simple and cost-effective method to map the distribution of RNA polymerase II (RNPII) genome-wide at a high resolution is highly beneficial to study cellular transcriptional activity. Here we report a mutation-based and enrichment-free global chromatin run-on sequencing (mGRO-seq) technique to locate active RNPII sites genome-wide at near-base resolution. An adenosine triphosphate (ATP) analog named N6-allyladenosine triphosphate (a6ATP) was designed and could be incorporated into nascent RNAs at RNPII-located positions during a chromatin run-on reaction. By treatment of the run-on RNAs with a mild iodination reaction and subjection of the products to reverse transcription into complementary DNA (cDNA), base mismatch occurs at the original a6A incorporation sites, thus making the RNPII locations detected in the high-throughput cDNA sequencing. The mGRO-seq yields both the map of RNPII sites and the chromatin RNA abundance and holds great promise for the study of single-cell transcriptional activity.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , Trifosfato de Adenosina , Cromatina , DNA Complementar , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
13.
Emerg Microbes Infect ; 11(1): 452-464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35045787

RESUMO

Breakthrough infection of SARS-CoV-2 is a serious challenge, as increased infections were documented in fully-vaccinated individuals. Recipients with poor antibody response are highly vulnerable to reinfection, whereas those with strong antibody responses achieve sterilizing immunity. Thus far, biomarkers associated with levels of vaccine-elicited antibody response are still lacking. Here, we studied the antibody response of age- and gender-controlled healthy cohort, who received inactivated SARS-CoV-2 vaccines and profiled the B cell receptor repertoires in longitudinally consecutive samples. Upon vaccination, all vaccinated individuals displayed a convergent antibody response with shared common antibody clones and public neutralizing antibodies. Strikingly, poor vaccine-responders are distinguishable from strong vaccine-responders by a biased V-usage before vaccination and IgG to IgM mRNA ratio. These findings reveal molecular signatures associated with the different levels of vaccine-induced antibody response, which could be further developed into biomarkers for the design of vaccination strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Receptores de Antígenos de Linfócitos B , SARS-CoV-2 , Vacinação
14.
J Am Chem Soc ; 144(3): 1323-1331, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037455

RESUMO

As an aberrant base in DNA, uracil is generated by either deoxyuridine (dU) misincorporation or cytosine deamination, and involved in multiple physiological and pathological processes. Genome-wide profiles of uracil are important for study of these processes. Current methods for whole-genome mapping of uracil all rely on uracil-DNA N-glycosylase (UNG) and are limited in resolution, specificity, and/or sensitivity. Here, we developed a UdgX cross-linking and polymerase stalling sequencing ("Ucaps-seq") method to detect dU at single-nucleotide resolution. First, the specificity of Ucaps-seq was confirmed on synthetic DNA. Then the effectiveness of the approach was verified on two genomes from different sources. Ucaps-seq not only identified the enrichment of dU at dT sites in pemetrexed-treated cancer cells with globally elevated uracil but also detected dU at dC sites within the "WRC" motif in activated B cells which have increased dU in specific regions. Finally, Ucaps-seq was utilized to detect dU introduced by the cytosine base editor (nCas9-APOBEC) and identified a novel off-target site in cellular context. In conclusion, Ucaps-seq is a powerful tool with many potential applications, especially in evaluation of base editing fidelity.


Assuntos
Nucleotídeos
15.
J Immunol ; 208(1): 143-154, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862258

RESUMO

Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.


Assuntos
Proteínas Aviárias/metabolismo , Subpopulações de Linfócitos B/imunologia , Linfoma de Burkitt/imunologia , Elementos Facilitadores Genéticos/genética , Imunoglobulinas/metabolismo , RNA Polimerase II/metabolismo , Animais , Diversidade de Anticorpos , Proteínas Aviárias/genética , Linfoma de Burkitt/genética , Galinhas , Citidina Desaminase/genética , Humanos , Imunoglobulinas/genética , Ativação Linfocitária , Mutagênese Sítio-Dirigida , Mutação/genética , RNA Polimerase II/genética , Hipermutação Somática de Imunoglobulina , Transcrição Gênica
16.
EMBO Mol Med ; 13(12): e14544, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672091

RESUMO

An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Glicoproteína da Espícula de Coronavírus
17.
Nucleic Acids Res ; 49(15): 8732-8742, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34365511

RESUMO

CRISPR-Cas9 generates double-stranded DNA breaks (DSBs) to activate cellular DNA repair pathways for genome editing. The repair of DSBs leads to small insertions or deletions (indels) and other complex byproducts, including large deletions and chromosomal translocations. Indels are well understood to disrupt target genes, while the other deleterious byproducts remain elusive. We developed a new in silico analysis pipeline for the previously described primer-extension-mediated sequencing assay to comprehensively characterize CRISPR-Cas9-induced DSB repair outcomes in human or mouse cells. We identified tremendous deleterious DSB repair byproducts of CRISPR-Cas9 editing, including large deletions, vector integrations, and chromosomal translocations. We further elucidated the important roles of microhomology, chromosomal interaction, recurrent DSBs, and DSB repair pathways in the generation of these byproducts. Our findings provide an extra dimension for genome editing safety besides off-targets. And caution should be exercised to avoid not only off-target damages but also deleterious DSB repair byproducts during genome editing.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes , Animais , Células Cultivadas , Simulação por Computador , Humanos , Camundongos , Plasmídeos/genética , Deleção de Sequência , Translocação Genética
18.
Genome Instab Dis ; 2(2): 115-125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33817557

RESUMO

The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.

19.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910903

RESUMO

m6A RNA modification is implicated in multiple cellular responses. However, its function in the innate immune cells is poorly understood. Here, we identified major m6A "writers" as the top candidate genes regulating macrophage activation by LPS in an RNA binding protein focused CRISPR screening. We have confirmed that Mettl3-deficient macrophages exhibited reduced TNF-α production upon LPS stimulation in vitro. Consistently, Mettl3 flox/flox;Lyzm-Cre mice displayed increased susceptibility to bacterial infection and showed faster tumor growth. Mechanistically, the transcripts of the Irakm gene encoding a negative regulator of TLR4 signaling were highly decorated by m6A modification. METTL3 deficiency led to the loss of m6A modification on Irakm mRNA and slowed down its degradation, resulting in a higher level of IRAKM, which ultimately suppressed TLR signaling-mediated macrophage activation. Our findings demonstrate a previously unknown role for METTL3-mediated m6A modification in innate immune responses and implicate the m6A machinery as a potential cancer immunotherapy target.


Assuntos
Ativação de Macrófagos , Metiltransferases , Adenosina/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Lipopolissacarídeos , Ativação de Macrófagos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
20.
Cell Rep ; 34(7): 108713, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596428

RESUMO

AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Reparo do DNA por Junção de Extremidades , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Instabilidade Genômica , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...