Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Transl Med ; 10(8): 439, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571418

RESUMO

Background: Neuroinflammation, which is mainly mediated by excessive microglia activation, plays a major role in ischemic stroke. Overactivated microglia secrete numerous inflammatory cytokines, causing excessive inflammatory responses and ultimately exacerbating ischemic brain injury. Hence, compounds that attenuate neuroinflammation could become promising drug candidates for ischemic stroke. Fraxetin has an anti-inflammatory effect in many inflammatory diseases. However, whether it possesses an anti-inflammatory capacity in microglia-mediated neuroinflammation after ischemic brain injury is unknown. Our study aimed to investigate the suppression effect of fraxetin on neuroinflammation in lipopolysaccharide (LPS)-activated microglia and establish whether fraxetin could alleviate ischemic brain injury in a rodent model of ischemic stroke. Methods: For the in vitro experiment, primary microglia were obtained from 1-day-old C57/BL6J mice. The cells were activated with LPS and treated with fraxetin at a non-cytotoxic concentration. Real-time PCR, enzyme-linked immunosorbent assays, and immunofluorescence staining were used to evaluate the anti-inflammatory effects of fraxetin. The potential molecular mechanisms were explored and verified through RNA-sequencing analysis, western blotting and real-time PCR. For the in vivo experiment, focal ischemia was induced by middle cerebral artery occlusion (MCAO) in 8-week-old male C57/BL6J mice. Fraxetin (5 mg/kg) or an equal volume of saline was injected into mice intraperitoneally after MCAO, and 2% 2,3,5-triphenyltetrazolium chloride staining was applied to measure infarct volume. Behavioral tests were conducted to measure neurological deficits in the mice. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the expression of inflammatory cytokines and microglia activation in the ischemic penumbra. Results: Fraxetin effectively inhibited the expression of proinflammatory cytokines including inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1 beta, and interleukin-6 in LPS-activated microglia. Fraxetin also suppressed the PI3K/Akt/NF-κB signaling pathway in activated microglia, which contributed to its anti-inflammatory effects. Furthermore, the administration of fraxetin attenuated ischemic brain injury and behavioral deficits after stroke. Finally, fraxetin was found to attenuate the activation of microglia both in vitro and in vivo. Conclusions: Our results suggest that fraxetin has a suppression effect on microglia-mediated neuroinflammation, and this effect is associated with the PI3K/Akt/NF-κB signaling pathway. Fraxetin may therefore have potential neuroprotective properties for ischemic stroke.

3.
CNS Neurosci Ther ; 23(8): 686-697, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28695670

RESUMO

AIMS: Accumulated evidence indicates that cerebral metabolic features, evaluated by proton magnetic resonance spectroscopy (1 H-MRS), are sensitive to early mitochondrion dysfunction associated with mitochondrial encephalomyopathy (ME). The metabolite ratios of lactate (lac)/Cr, N-acetyl aspartate (NAA)/creatine (Cr), total choline (tCho)/Cr, and myoinositol (mI)/Cr are measured in the infarct-like lesions by 1 H-MRS and may reveal metabolic changes associated with ME. However, the application of this molecular imaging technique in the investigation of the pathology of ME subtypes is unknown. METHODS: In this study, cerebral metabolic features of pathologically diagnosed ME cases, that is, 19 mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS); nine chronic progressive external ophthalmoplegia (CPEO); and 23 healthy controls, were investigated using 1 H-MRS. Receiver operating characteristics (ROC) analysis was used to evaluate the diagnostic power of the cerebral metabolites. Histochemical evaluation was carried out on muscle tissues derived from biopsy to assess the abnormal mitochondrial proliferation. The association between cerebral metabolic and mitochondrial cytopathy was examined by correlation analysis. RESULTS: Patients with MELAS or CPEO exhibited a significantly higher Lac/Cr ratio and a lower NAA/Cr ratio compared with controls. The ROC curve of Lac/Cr ratio indicated prominent discrimination between MELAS or CPEO and healthy control subjects, whereas the NAA/Cr ratio may present diagnostic power in the distinction of MELAS from CPEO. Lower NAA/Cr ratio was associated with higher Lac/Cr in MELAS, but not in CPEO. Furthermore, higher ragged-red fibers (RRFs) percentages were associated with elevated Lac/Cr and reduced NAA/Cr ratios, notably in MELAS. This association was not noted in the case of mI/Cr ratio. CONCLUSIONS: Mitochondrial cytopathy (lactic acidosis and RRFs on muscle biopsy) was associated with neuronal viability but not glial proliferation, notably in MELAS. Mitochondrial neuronopathy and neuronal vulnerability are considered significant causes in the pathogenesis of MELAS, particularly with regard to stroke-like episodes.


Assuntos
Encéfalo/metabolismo , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , Oftalmoplegia Externa Progressiva Crônica/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Síndrome MELAS/diagnóstico por imagem , Síndrome MELAS/patologia , Masculino , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico por imagem , Oftalmoplegia Externa Progressiva Crônica/patologia , Espectroscopia de Prótons por Ressonância Magnética , Curva ROC
4.
Tumour Biol ; 39(4): 1010428317697546, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28381181

RESUMO

hMLH1 is one of the mismatch genes closely related to the occurrence of gastric cancer. Epigenetic regulation may play more important roles than gene mutations in DNA damage repair genes to drive carcinogenesis. In this article, we discuss the role of epigenetic changes, especially histone modifications in the regulation of hMLH1 alternative splicing. Our results showed that hMLH1 delEx10, delEx11, delEx10-11, delEx16 and delEx17 transcripts were ubiquitous in sporadic Chinese gastric cancer patients and gastric cancer cell lines. Lower level of H4K16ac and H3ac was detected in hMLH1 exon 10-11 region in gastric cancer cell lines when compared with human gastric mucosal epithelial cell line GES-1. A significant decrease of hMLH1 delEx11 and delEx10-11 was observed in gastric cancer cell lines after trichostatin A treatment. H3K36me3 and H3K4me2 levels were lower in hMLH1 exon 10-11 and exon 16-17 regions in gastric cancer lines when compared with GES-1. Aberrant transcripts such as hMLH1 delEx11 and delEx10-11 were significantly higher in gastric cancer cell lines after small interfering RNA-mediated knockdown of SETD2 (the specific methyltransferase of H3K36). The hMLH1 delEx10 and delEx10-11 transcripts were increased after interference of SRSF2. Taken together, our study demonstrates that lower level of histone acetylation and specific histone methylation such as H3K36me3 correlate with aberrant transcripts in hMLH1 exon 10-11 region. SRSF2 may be involved in these specific exons skipping as well.


Assuntos
Processamento Alternativo , Proteína 1 Homóloga a MutL/genética , Neoplasias Gástricas/genética , Acetilação , Adulto , Idoso , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA , Feminino , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
5.
CNS Neurosci Ther ; 22(9): 771-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27283206

RESUMO

AIMS: This study explored sFasL expression in neurons and the potential role of neuronal sFasL in modulating the microglial phenotypes. METHODS: In vivo, middle cerebral artery occlusion (MCAO) was induced in both FasL-mutant (gld) and wild-type (wt) mice. In vitro, primary cortical neuron or microglia or coculture from wt/gld mice was subjected to oxygen glucose deprivation (OGD). sFasL level in the supernatant was evaluated by ELISA. Neuronal-conditioned medium (NCM) or exogenous sFasL was applied to primary microglia with or without FasL neutralizing antibody. Protein expression of JAK2/STAT3 and NF-κB pathways were determined by Western blot. The effect of microglia phenotype from wt/gld mice on the fate of ischemic neurons was further elucidated. RESULTS: In vivo, compared with wild-type mice, M1 markers (CD16, CD32 and iNOS) were attenuated in gld mice after MCAO. In vitro, post-OGD neuron released more sFasL. Both post-OGD NCM and exogenous sFasL could trigger M1-microglial polarization. However, this M1 phenotype shift was partially blocked by utilization of FasL neutralizing antibody or gld NCM. Consistently, JAK2/STAT3 and NF-κB signal pathways were both activated in microglia after exogenous sFasL treatment. Compared with wild-type mice, M1-conditioned medium prepared from gld mice protected neuron against OGD injury. CONCLUSIONS: Ischemic neurons release sFasL, which contributes to M1-microglial polarization. The underlying mechanisms may involve the activation of JAK2/STAT3 and NF-κB signaling pathways.


Assuntos
Polaridade Celular/genética , Proteína Ligante Fas/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Microglia/patologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Hipóxia Celular/genética , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Ligante Fas/genética , Regulação da Expressão Gênica/genética , Glucose/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/química , Microglia/classificação , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA