Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 187: 225-234, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067199

RESUMO

The municipal solid waste (MSW) management is significantly contributing to global greenhouse gas (GHG) emissions. Analyzing the emission pattern of GHGs from MSW is essential for formulating appropriate carbon mitigation policies. Based on IPCC Models, GHG emissions from MSW were calculated in Chinese provinces from 2004 to 2021 by landfilling and incineration operations, separately. Landfilling and incineration generated approximately 1271 MtCO2-eq and 198 MtCO2-eq from 2004 to 2021, respectively. GHG emissions from landfilling increased from 2004 to 2020 and declined in 2021, while GHG emissions from incineration demonstrated an increasing trend with three distinct growth stages. A panel regression model was then employed to identify the key factors influencing GHG emissions. GDP and population are positively related to GHG emissions from landfills, while PCCE is negatively related to GHG emissions from landfills. GDP and PCCE have a positive impact on GHG emissions from incineration, while population showed no significant impact. Multi-expression programming was used to develop an explicit model, forecasting GHG emissions from MSW by 2030. From 2022 to 2024, GHG emissions from landfills will quickly decrease, while GHG emissions from incineration will rapidly increase. Subsequently, the GHG emission rate of incineration will slow down, and GHGs from landfilling will slowly decrease due to no MSW for landfill disposal. The methods and results provide insightful information for policy-makers and waste management sector.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Resíduos Sólidos , Gases de Efeito Estufa/análise , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , China , Previsões , Poluentes Atmosféricos/análise , Incineração , Instalações de Eliminação de Resíduos , Modelos Teóricos , Monitoramento Ambiental/métodos
2.
J Hazard Mater ; 474: 134744, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850933

RESUMO

Compared to traditional lead-remediating materials, natural-occurring paleosol is ubiquitous and could be a promising alternative due to its rich content in calcite, a substance known for its lead-removal ability via carbonate dissolution-PbCO3 precipitation process. Yet, the capability of paleosol to remediate aqueous solutions polluted with heavy metals, lead included, has rarely been assessed. To fill this gap, a series of column permeation experiments with influent Pb2+ concentrations of 2000, 200, and 20 mg/L were conducted and monitored by the spectral induced polarization technique. Meanwhile, the SEM-EDS, XRD, XPS, FTIR and MIP tests were carried out to unveil the underlying remediation mechanisms. The Pb-retention capacity of paleosol was 1.03 mmol/g. The increasing abundance of Pb in the newly-formed crystals was confirmed to be PbCO3 by XRD, SEM-EDS and XPS. Concurrently, after Pb2+ permeation, the decreasing calcite content in paleosol sample from XRD test, and the appearance of Ca2+ in the effluent confirmed that the dissolution of CaCO3 followed by the precipitation of PbCO3 was the major mechanism. The accumulated Pb (i.e., the diminished Ca) in paleosol was inversely proportional (R2 >0.82) to the normalized chargeability (mn), an SIP parameter denoting the quantity of polarizable units (primarily calcite).

3.
Langmuir ; 40(22): 11732-11744, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770950

RESUMO

To elucidate the degradation mechanism of the CMC-modified MMT composite at aggressive Cu2+ concentrations, large scale molecular dynamics simulation was conducted for CuCl2 concentrations ranging from 0 to 800 mM. Both CMC and MMT followed the Langmuir isotherm for Cu2+ adsorption, and the adsorption capacity of CMC (8.75 mmol/g) was much higher than that of MMT (0.83 mmol/g). Despite the CMC mass ratio being only 4.1%, it adsorbed up to 34.3% of the total adsorbed Cu2+. The Cu2+ attraction ability hierarchy of oxygen-containing functional groups in the CMC is as follows: carboxylic oxygens > alcoholic oxygens > carbinolic oxygens > bridging oxygens > glucose oxygens. Carboxyls were the most effective in chelating and complexing with Cu2+, and they could be intentionally added in artificially synthesized polymer-MMT composites for Cu2+ containment. Formation of the Cu2+ cation bridge between CMC and MMT at aggressive CuCl2 concentrations contributed to the transition of CMC density distribution from unimodality to bimodality and enhanced resistance of polymer elution. As the CuCl2 concentration increased, the stoichiometric ratio between the chelated Cu2+ and carboxylic oxygens increased from 1:2 to 1:1, suggesting the evolution of the Cu2+ chelation mechanism.

4.
Environ Res ; 251(Pt 2): 118778, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527721

RESUMO

Copper contaminant generated from mining and industrial smelting poses potential risks to human health. Biochar, as a low-energy and cost-effective biomaterial, holds value in Cu remediation. Spectral Induced Polarization (SIP) technique is employed in this study to monitor the Cu remediation processes of by biochar in column experiments. Cation exchange at low Cu2+ concentrations and surface complexation at high Cu2+ concentrations are identified as the major mechanisms for copper retention on biochar. The normalized chargeability (mn) from SIP signals linearly decreased (R2 = 0.776) with copper retention under 60 mg/L Cu influent; while mn linearly increases (R2 = 0.907, 0.852) under high 300 and 700 mg/L Cu influents. The characteristic polarizing unit sizes (primarily the pores adsorbing Cu2+) calculated from Schwartz equation match well with experimental results by mercury intrusion porosimetry (MIP). It is revealed that Cu2+ was driven to small pores (∼3 µm) given high concentration gradient (influent Cu2+ concentration of 700 mg/L). Comparing to activated carbon, biochar is identified as an ideal adsorbent for Cu remediation, given its high adsorption capacity, cost-effectiveness, carbon-sink ability, and high sensitivity to SIP responses - the latter facilitates its performance assessment.


Assuntos
Carvão Vegetal , Cobre , Cobre/química , Carvão Vegetal/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise
6.
Biomed Pharmacother ; 71: 84-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25960220

RESUMO

Our previous study (Biomed Pharmacother 2015;69:11) demonstrated that the over-expression of CRKL, a chicken tumor virus number 10 regulator of kinase-like protein, suppresses in vitro proliferation, invasion and migration of murine hepatocarcinoma Hca-P cell, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. In current work, we investigated the effects of CRKL knockdown on the in vitro cell proliferation, migration and invasion, and on the in vivo tumor malignancy and LNM rate and level for Hca-P cells. Western blotting assay indicated that CRKL was down-regulated by ∼90% in a monoclonal CrkL-shRNA-transfected Hca-P cells. Compared with Hca-P and unrelated-shRNA-transfected Hca-P cell, the in vitro proliferation, migration and invasion potentials were significantly enhanced following CRKL stable deregulation. CRKL knock-down significantly promoted the tumorigenicity malignancy, LNM rates and level of Hca-P-transplanted mice. Consistent with our previous work, it can be concluded CRKL plays an important role in hepatocarcinoma cell proliferation, invasion and migration as well hepatocarcinoma malignancy and metastasis. It functions as a potential tumor suppressor in hepatocarcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Técnicas de Silenciamento de Genes , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metástase Linfática/patologia , Proteínas Nucleares/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , RNA Interferente Pequeno/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA