Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(26): 11179-11189, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340955

RESUMO

Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ(T) < 0.1 °C), high relative thermal sensitivity (Sr > 1% °C-1), fast temporal response (t < 0.1 s), and long-term optical stability. In this study, NaYF4:Yb3+/Ho3+/Tm3+ upconversion nanoparticles were prepared by a solvothermal method, and their crystal structure, microscopic morphology, and luminescence mechanism, together with the temperature sensing properties of the specimens, were investigated. Under 980 nm laser excitation, the specimens exhibited strong upconversion luminescence, and the emission peaks corresponded to the characteristic energy level jumps of Ho3+ and Tm3+, respectively. The temperature-dependent luminescence spectra of the samples were investigated based on the fluorescence intensity ratio (FIR) technique over a temperature gradient of 295-495 K. The samples are based on thermally coupled energy levels (TCLs: 1G4(1,2) → 3H6(Tm3+)) and non-thermally coupled energy levels (NTCLs: 3F3 → 3H6(Tm3+) and 5F3 → 5I8(Ho3+), 3F3 → 3H6(Tm3+) and 1G4 → 3H6(Tm3+), 3F3 → 3H6(Tm3+) and 5F5 → 5I8(Ho3+), 3F3 → 3H6(Tm3+) and 5F4 → 5I8(Ho3+)) for temperature sensing performance. The maximum absolute sensitivity (Sa), relative sensitivity (Sr), and minimum temperature resolution δ(T) were found to be 0.0126 K-1 (495 K), 1.7966% K-1 (345 K), and 0.0167 K, respectively, which are better than those of most sensing materials, and the simultaneous action of multiple coupling energy levels can further improve the temperature precision. This study indicates that the sample has a good value for optical temperature measurement and also provides new ideas for the exploration of other high-quality optical temperature sensing materials.

2.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35901726

RESUMO

NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+upconversion nanoparticles were prepared using a solvothermal method, and the effects of key factors such as the content of sensitiser Nd3+and Yb3+on their luminescence properties were investigated. The nanoparticles are homogeneous in size and well dispersed. Under 808 nm excitation, it can produce strong upconversion fluorescence. At the same time, the nanoparticles have good temperature sensing properties at the thermally coupled energy levels of 700 and 646 nm for Tm3+. Using its fluorescence intensity ratio, accurate temperature measurements can be performed, and it has been found that it exhibits different temperature sensing properties in low and high-temperature regions. The maximum relative sensitivity was found to be 0.88% K-1and 1.89% K-1for the low-temperature region of 285-345 K and the high-temperature region of 345-495 K. The nanoparticles were applied to the internal temperature measurement of lithium batteries and the actual high-temperature environment, respectively, and were found to have good temperature measurement performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...