Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Agric Food Chem ; 72(12): 6236-6249, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484389

RESUMO

Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Lactobacillus plantarum , Humanos , Feminino , Camundongos , Animais , Hipercolesterolemia/metabolismo , Ácidos e Sais Biliares/metabolismo , Pós-Menopausa , Colesterol/metabolismo , Lactobacillus plantarum/metabolismo , Fígado/metabolismo , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
2.
Eur J Pharmacol ; 971: 176530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527700

RESUMO

After myocardial infarction (MI), there is a notable disruption in cellular calcium ion homeostasis and mitochondrial function, which is believed to be intricately linked to endoplasmic reticulum (ER) stress. This research endeavors to elucidate the involvement of glucose regulated protein 75 (GRP75) in post-MI calcium ion homeostasis and mitochondrial function. In MI rats, symptoms of myocardial injury were accompanied by an increase in the activation of ER stress. Moreover, in oxygen-glucose deprivation (OGD)-induced cardiomyocytes, it was confirmed that inhibiting ER stress exacerbated intracellular Ca2+ disruption and cell apoptosis. Concurrently, the co-localization of GRP75 with IP3R and VDAC1 increased under ER stress in cardiomyocytes. In OGD-induced cardiomyocytes, knockdown of GRP75 not only reduced the Ca2+ levels in both the ER and mitochondria and improved the ultrastructure of cardiomyocytes, but it also increased the number of contact points between the ER and mitochondria, reducing mitochondria associated endoplasmic reticulum membrane (MAM) formation, and decreased cell apoptosis. Significantly, knockdown of GRP75 did not affect the protein expression of PERK and hypoxia-inducible factor 1α (HIF-1α). Transcriptome analysis of cardiomyocytes revealed that knockdown of GRP75 mainly influenced the molecular functions of sialyltransferase and IP3R, as well as the biosynthesis of glycosphingolipids and lactate metabolism. The complex interaction between the ER and mitochondria, driven by the GRP75 and its associated IP3R1-GRP75-VDAC1 complex, is crucial for calcium homeostasis and cardiomyocyte's adaptive response to ER stress. Modulating GRP75 could offer a strategy to regulate calcium dynamics, diminish glycolysis, and thereby mitigate cardiomyocyte apoptosis.


Assuntos
Cálcio , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana , Infarto do Miocárdio , Animais , Ratos , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Oxigênio/metabolismo
3.
Mol Brain ; 16(1): 80, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986006

RESUMO

Cognitive dysfunction increases as menopause progresses. We previously found that estrogen receptors (ERs) contribute to dyslipidemia, but the specific relationship between ERs, dyslipidemia and cognitive dysfunction remains poorly understood. In the present study, we analyzed sequencing data from female hippocampus and normal breast aspirate samples from normal and Alzheimer's disease (AD) women, and the results suggest that abnormal ERs signaling is associated with dyslipidemia and cognitive dysfunction. We replicated a mouse model of dyslipidemia and postmenopausal status in LDLR-/- mice and treated them with ß-estradiol or simvastatin, and found that ovariectomy in LDLR-/- mice led to an exacerbation of dyslipidemia and increased hippocampal apoptosis and cognitive impairment, which were associated with reduced estradiol levels and ERα, ERß and GPER expression. In vitro, a lipid overload model of SH-SY-5Y cells was established and treated with inhibitors of ERs. ß-estradiol or simvastatin effectively attenuated dyslipidemia-induced neuronal apoptosis via upregulation of ERs, whereas ERα, ERß and GPER inhibitors together abolished the protective effect of simvastatin on lipid-induced neuronal apoptosis. We conclude that decreased estrogen and its receptor function in the postmenopausal stage promote neuronal damage and cognitive impairment by exacerbating dyslipidemia, and that estrogen supplementation or lipid lowering is an effective way to ameliorate hippocampal damage and cognitive dysfunction via upregulation of ERs.


Assuntos
Disfunção Cognitiva , Receptor alfa de Estrogênio , Humanos , Camundongos , Feminino , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Pós-Menopausa , Estrogênios/farmacologia , Estradiol/farmacologia , Disfunção Cognitiva/complicações , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Lipídeos
4.
Microbiome ; 11(1): 248, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936242

RESUMO

BACKGROUND: Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Gut microbial dysbiosis is associated with neurological diseases; however, the mechanisms by which the microbiota regulates postoperative gastrointestinal and cognitive function are incompletely understood. METHODS: Behavioral testing, MiSeq 16S rRNA gene sequencing, non-target metabolism, intestinal permeability detection, protein assays, and immunofluorescence staining were employed to discern the impacts of surgery on microbial profiles, intestinal barriers, serum metabolism, and the brain. Interventions in mice included fecal microbiota transplantation, the anti-inflammatory agent dexamethasone, Lactobacillus supplementation, indole propionic acid supplementation, and palmitic amide administration. RESULTS: Surgery-induced cognitive impairment occurs predominantly in aged mice, and surgery-induced alterations in the microbiota composition profile exacerbate intestinal barrier disruption in aged mice. These adverse effects can be mitigated by transferring microbiota from young donors or by bolstering the intestinal barrier function using dexamethasone, Lactobacillus, or indole propionic acid. Moreover, microbiota composition profiles can be restored by transplanting feces from young mice to aged surgical mice, improving neuropathology and cognitive function, and these effects coincide with increased intestinal permeability. Metabolomic screening identified alterations in metabolites in mouse serum after surgery, especially the increase in palmitic amide. Palmitic amide levels in serum and brain can be decreased by transplanting feces from young mice to aged surgical mice. Oral palmitic amide exacerbates cognitive impairment and neuropathological changes in mice. CONCLUSIONS: Gut microbial dysbiosis in mice after surgery is a key mechanism leading to cognition dysfunction, which disrupts the intestinal barrier and metabolic abnormalities, resulting in neuroinflammation and dendritic spine loss. Intestinal barrier damage and high level of palmitic amide in old mice may be the cause of high incidence of PND in the elderly. Preoperative microbiota regulation and intestinal barrier restoration may be of therapeutic benefit in preventing PND. Video Abstract.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Animais , Camundongos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Disbiose/etiologia , Microbioma Gastrointestinal/genética , Indóis/farmacologia , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
5.
Clin Exp Pharmacol Physiol ; 50(11): 867-877, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574718

RESUMO

Preventing or treating heart failure (HF) by blocking cardiomyocyte apoptosis is an effective strategy that improves survival and reduces ventricular remodelling and dysfunction in the chronic stage. Autophagy is a mechanism that degrades intracellular components and compensates for energy deficiency, which is commonly observed in cardiomyocytes of failed hearts. Cardiomyocytes activated by doxorubicin (DOX) exhibit strong autophagy. This study aims to investigate the potential protective effect of ligustrazine and its derivative liguzinediol on regulating DOX-induced cardiomyocyte apoptosis and explore the use of the embryonic rat heart-derived myoblast cell line H9C2 for identifying novel treatments for HF. The results indicated that it has been demonstrated to reverse myocardial infarction remodelling in failed hearts by promoting autophagy in salvaged cardiomyocytes and anti-apoptosis of cardiomyocytes in granulation tissue. Our study suggests that ligustrazine and liguzinediol can be a promising agents and autophagy is potential pathway in the management of HF.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Animais , Doxorrubicina/farmacologia , Insuficiência Cardíaca/metabolismo , Apoptose , Autofagia
6.
Angew Chem Int Ed Engl ; 62(41): e202310435, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620985

RESUMO

The prosperity of the lithium-ion battery market is dialectically accompanied by the depletion of corresponding resources and the accumulation of spent batteries. It is an urgent priority to develop green and efficient battery recycling strategies for helping ease resources and environmental pressures at the current stage. Here, we propose a mild and efficient lithium extracting strategy based on potential controllable redox couples. Active lithium in the spent battery without discharging is extracted using a series of tailored aprotic solutions comprised of polycyclic aromatic hydrocarbons and ethers. This ensures a safe yet efficient recycling process with nearly ≈100 % lithium recovery. We further investigate the Li+ -electron concerted redox reactions and the effect of solvation structure on kinetics during the extraction, and broaden the applicability of the Li-PAHs solution. This work can stimulate new inspiration for designing novel solutions to meet efficient and sustainable demands in recycling batteries.

7.
Int Immunopharmacol ; 116: 109825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764277

RESUMO

Acute cardiovascular events increase significantly in postmenopausal women. The relationship between estrogen receptor (ER) and plaque stability in the postmenopausal stage remains to be elucidated. We aimed to explore whether ERα activation improves plaque instability in the postmenopausal stage. Here, we report that postmenopausal women showed increased macrophage activation and plaque instability with increased MCP-1, MMP9, TLR4, MYD88 and NF-κB p65 and decreased ERα and TIMP1 expression in the vascular endothelium. Moreover, ovariectomy in LDLR-/- mice resulted in a significant increase in plaque area and necrotic core area, as well as a significant decrease in collagen content and an increase in macrophage accumulation in the artery. Ovariectomy also reduced serum estrogen levels and ERα expression and upregulated TLR4 and MMP9 expression in arteries in LDLR-/- mice. Estrogen or phytoestrogen therapy upregulated the expression level of ERα in ovariectomized mice and increased plaque stability by inhibiting macrophage accumulation and TLR4 signaling. In vitro, LPS incubation of RAW264.7 cells resulted in a significant decrease in ERα and TIMP1 expression and an increase in TLR4 activation, and estrogen or phytoestrogen treatment increased ERα and TIMP1 expression and inhibited TLR4 activation and MMP9 expression in LPS-treated RAW264.7 cells. Compared to control siRNA transfected RAW264.7 cells, TLR4 siRNA promoted TIMP1 expression in RAW264.7 cells with LPS incubation, but did not affect ERα expression in RAW264.7 cells with or without LPS treatment. The ERα inhibitor MPP abolished the regulatory effect of estrogen or phytoestrogen on LPS-induced RAW264.7 cells. In conclusion, the present study demonstrates that decreased ERα expression promotes macrophage infiltration and plaque instability in the postmenopausal stage, and activation of ERα in the postmenopausal stage alleviates atherosclerotic plaque instability by inhibiting TLR4 signaling and macrophage-related inflammation.


Assuntos
Receptor alfa de Estrogênio , Placa Aterosclerótica , Receptor 4 Toll-Like , Animais , Feminino , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Lipopolissacarídeos , Macrófagos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Fitoestrógenos , Pós-Menopausa , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Humanos , Células RAW 264.7
8.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679479

RESUMO

To improve the accuracy of shallow neural networks in processing complex signals and cable fault diagnosis, and to overcome the shortage of manual dependency and cable fault feature extraction, a deep learning method is introduced, and a time-frequency domain joint impedance spectrum is proposed for cable fault identification and localization based on a deep belief network (DBN). Firstly, based on the distribution parameter model of power cables, we model and analyze the cables under normal operation and different fault types, and we obtain the headend input impedance spectrum and the headend input time-frequency domain impedance spectrum of cables under various operating conditions. The headend input impedance amplitude and phase of normal operation and different fault cables are extracted as the original input samples of the cable fault type identification model; the real part of the headend input time-frequency domain impedance of the fault cables is extracted as the original input samples of the cable fault location model. Then, the unsupervised pre-training and supervised inverse fine-tuning methods are used for automatically learning, training, and extracting the cable fault state features from the original input samples, and the DBN-based cable fault type recognition model and location model are constructed and used to realize the type recognition and location of cable faults. Finally, the proposed method is validated by simulation, and the results show that the method has good fault feature extraction capability and high fault type recognition and localization accuracy.


Assuntos
Redes Neurais de Computação , Reconhecimento Psicológico , Impedância Elétrica , Simulação por Computador
9.
Eur J Pharmacol ; 929: 175148, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35834964

RESUMO

Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Salidroside, a plant-derived compound, has gained increased attention as a treatment for various neurological diseases and particularly as a modifier of microglia-mediated neuroinflammation. However, the effect of salidroside on orthopedic surgery-induced cognitive dysfunction and the underlying mechanisms are largely unknown. Here, we found that salidroside greatly attenuated cognitive impairment in mice after orthopedic surgery. Neuroinflammation in the mouse hippocampus was also attenuated by salidroside. Meanwhile, salidroside treatment induced a switch in microglial polarization to the anti-inflammatory phenotype. In vitro, salidroside suppressed the expression of proinflammatory cytokines and induced a switch in microglial phenotype to the anti-inflammatory phenotype. Mechanistically, molecular docking studies revealed the potential AMPK activation activity of salidroside. And salidroside did up-regulated the AMPK pathway proteins. Moreover, AMPK antagonist abolished the effects of salidroside in vivo and in vitro. Taken together, our results demonstrated that salidroside effectively suppressed PND by suppressing microglia-mediated neuroinflammation through activating AMPK pathway, and it might be a novel therapeutic approach for PND.


Assuntos
Disfunção Cognitiva , Procedimentos Ortopédicos , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Glucosídeos , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Simulação de Acoplamento Molecular , Fenóis
10.
Phytomedicine ; 101: 154120, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523117

RESUMO

BACKGROUND: Postmenopausal women have a high incidence of atherosclerosis. Phytosterols have been shown to have cholesterol-lowering properties. Alisa B 23-acetate (AB23A) is a biologically active plant sterol isolated from Chinese herbal medicine Alisma. However, the atherosclerosis effect of AB23A after menopause and its possible mechanism have not been reported yet. PURPOSE: To explore whether AB23A can prevent atherosclerosis by regulating farnesoid X receptor and subsequently increasing fecal bile acid and cholesterol excretion to reduce plasma cholesterol levels. METHODS: Aortic samples from premenopausal and postmenopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female LDLR-/- mice and free fatty acid (FFA)-treated L02 cells were used to analyze the effect of AB23A supplementation therapy. RESULTS: AB23A increased fecal cholesterol and bile acids (BAs) excretion dependent on activation of hepatic farnesoid X receptor (FXR) in ovariectomized mice. AB23A inhibited hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) via inducing small heterodimer partner (SHP) expression. On the other hand, AB23A increased the level of hepatic chenodeoxycholic acid (CDCA), and activated the hepatic BSEP signaling. The activation of hepatic FXR-BSEP signaling by AB23A in ovariectomized mice was accompanied by the reduction of liver cholesterol, hepatic lipolysis, and bile acids efflux, and reduced the damage of atherosclerosis. In vitro, AB23A fixed abnormal lipid metabolism in L02 cells and increased the expression of FXR, BSEP and SHP. Moreover, the inhibition and silencing of FXR canceled the regulation of BSEP by AB23A in L02 cells. CONCLUSION: Our results shed light into the mechanisms behind the cholesterol-lowering of AB23A, and increasing FXR-BSEP signaling by AB23A may be a potential postmenopausal atherosclerosis therapy.


Assuntos
Aterosclerose , Ácidos e Sais Biliares , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Ácidos e Sais Biliares/metabolismo , Colestenonas , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Feminino , Humanos , Fígado , Camundongos
11.
Angew Chem Int Ed Engl ; 61(24): e202202558, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35305061

RESUMO

The complexity of chemical compounds in lithium-ion batteries (LIBs) results in great difficulties in the extraction of multiple transition metals, which have similar physicochemical characteristics. Here, we propose a novel strategy for selective extraction of nickel, cobalt, and manganese from spent LiNix Coy Mn1-x-y O2 (NCM) cathode through the regulation of coordination environment. Depending on adjusting the composition of ligand in transition metal complexes, a tandem leaching and separation system is designed and finally enables nickel, cobalt, and manganese to enrich in the form of NiO, Co3 O4 , and Mn3 O4 with high recovery yields of 99.1 %, 95.1 %, and 95.3 %, respectively. We further confirm that the combination of different transition metals with well-designed ligands is the key to good selectivity. Through our work, fine-tuning the coordination environment of metal ions is proved to have great prospects in the battery recycling industry.

12.
Pharmacol Ther ; 234: 108123, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121000

RESUMO

The present review aimed to outline different types of RNAs in cancer diagnostics and treatment, and to provide novel insights into their clinical applications. RNAs, including mRNA, long non-coding (lnc)RNA, circular (circ)RNA and micro (mi)RNA, are now increasingly utilized in the diagnosis and treatment of various cancers. Each aforementioned type of RNA possess their own unique characteristics and could be aberrantly expressed as diagnostic markers or therapeutic targets in different cancers. In addition to mRNAs, which have become a promising alternative in cancer diagnostics and therapy, the uses of lncRNA, circRNA and miRNA in predictive tumor diagnostics and therapy has rapidly increased in recent years. In the present review, the mechanisms of mRNA, lncRNA, circRNA and miRNA in regulating and participating in the development of different cancers were determined, and their potential capacity in cancer diagnostics and therapy were investigated. In addition, the present review analyzed the assoaciations between different RNAs and their subsequent potential in cancer prediction and treatment.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular , RNA Longo não Codificante/genética , RNA Mensageiro
13.
Ann Transl Med ; 10(23): 1279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36618788

RESUMO

Background: Airway remodeling and inflammation are considered the main characteristics of chronic obstructive pulmonary disease (COPD). Cigarette smoke promotes the occurrence of inflammation, oxidative stress, and pyroptosis. Halotherapy has been shown to dilute secretions in the airways and promote drainage, but the mechanism remains unclear. In this study, we evaluated the anti-inflammatory and antioxidant effects of halotherapy in COPD rats and investigated the underlying mechanism. Methods: A COPD rat model was constructed by cigarette smoke and lipopolysaccharide tracheal instillation. A total of 120 male Sprague-Dawley (SD) rats were randomly divided into control, model, halotherapy, terbutaline, halotherapy + terbutaline, and Ac-YVAD-CMK (Caspase-1 inhibitor) groups. After modeling and treatment, the pulmonary function of the rats was measured. Pathological changes in the lungs were measured by hematoxylin-eosin (H&E) staining. Serum interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and nitric oxide (NO) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in the lungs were determined by biochemical tests. The levels of cluster of differentiation 4 (CD4+) and CD8+ T cells in the blood were determined by flow cytometry. The expression levels of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), gasdermin-D (GSDMD), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), Caspase-1, and IL-1ß in lung tissues were detected by immunohistochemistry, Western blotting, or quantitative polymerase chain reaction (qPCR). Results: Halotherapy recovered the clinical symptoms of COPD rats, and reduced lung inflammatory cell infiltration and air wall attenuation. It also relieved oxidative stress in the lung tissue of COPD rats, reduced CD4+ and CD8+ T cell accumulation in lung tissue, and decreased inflammatory factor production in the serum of COPD rats. Furthermore, it inhibited the TLR4/NF-κB/GSDMD and NLRP3/ASC/Caspase-1 signaling pathways. Ac-YVAD-CMK could not completely inhibit the therapeutic effect of halotherapy on COPD rats. Conclusions: Halotherapy improves lung function by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway to reduce inflammation and pyroptosis in COPD rats, and may be a new option for the prevention and treatment of COPD.

14.
Nat Commun ; 12(1): 5267, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489437

RESUMO

Na-ion cathode materials operating at high voltage with a stable cycling behavior are needed to develop future high-energy Na-ion cells. However, the irreversible oxygen redox reaction at the high-voltage region in sodium layered cathode materials generates structural instability and poor capacity retention upon cycling. Here, we report a doping strategy by incorporating light-weight boron into the cathode active material lattice to decrease the irreversible oxygen oxidation at high voltages (i.e., >4.0 V vs. Na+/Na). The presence of covalent B-O bonds and the negative charges of the oxygen atoms ensures a robust ligand framework for the NaLi1/9Ni2/9Fe2/9Mn4/9O2 cathode material while mitigating the excessive oxidation of oxygen for charge compensation and avoiding irreversible structural changes during cell operation. The B-doped cathode material promotes reversible transition metal redox reaction enabling a room-temperature capacity of 160.5 mAh g-1 at 25 mA g-1 and capacity retention of 82.8% after 200 cycles at 250 mA g-1. A 71.28 mAh single-coated lab-scale Na-ion pouch cell comprising a pre-sodiated hard carbon-based anode and B-doped cathode material is also reported as proof of concept.

15.
Front Pharmacol ; 12: 693777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122118

RESUMO

Bone erosion is the most evident pathological condition of rheumatoid arthritis (RA), which is the main cause of joint deformities and disability in RA patients. At present, the conventional RA drugs have not achieved satisfactory effect in improving bone erosion. ZhiJingSan (ZJS), which is a traditional Chinese prescription composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch, scolopendridae) and scorpion (dried body of Buthus martensii Karsch, Buthus), exhibits anti-rheumatism, analgesic and joint deformities improvement effects. This study aimed to assess the therapeutic effect of ZJS on RA bone erosion and to elucidate the underlying mechanism. The effect of ZJS on RA bone erosion was investigated in a murine model of bovine collagen-induced arthritis (CIA), and the underlying mechanism was investigated in vitro in an osteoclast differentiation cell model. Administration of ZJS delayed the onset of arthritis, alleviated joint inflammation, and attenuated bone erosion in the CIA mice. Meanwhile, ZJS decreased the serum levels of TNF-α, IL-6, and anti-bovine collagen II-specific antibodies. Furthermore, ZJS treatment reduced the number of osteoclasts and the expression of cathepsin K in the ankle joints of CIA mice. ZJS also inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and the expression of MMP9 and cathepsin K in vitro. Mechanistically, ZJS blocked RANKL-induced p65 phosphorylation, nucleation, and inhibited the expression of downstream NFATc1 and c-Fos in bone marrow-derived macrophages (BMMs). Taken together, ZJS exerts a therapeutic effect on bone erosion in CIA mice by inhibiting RANKL/NF-κB-mediated osteoclast differentiation, which suggested that ZJS is a promising prescription for treating RA bone erosion.

16.
Chin Med ; 16(1): 39, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985537

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Soufeng sanjie formula (SF), which is composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch), scorpion (dried body of Buthus martensii Karsch), astragali radix (dried root of Astragalus membranaceus (Fisch.) Bge), and black soybean seed coats (seed coats of Glycine max (L.) Merr), is a traditional Chinese prescription for treating RA. However, the mechanism of SF in treating RA remains unclear. This study was aim to investigate the anti-arthritic effects of SF in a collagen-induced arthritis (CIA) mouse model and explore the mechanism by which SF alleviates arthritis in CIA mice. METHODS: For in vivo studies, female DBA/1J mice were used to establish the CIA model, and either SF (183 or 550 mg/kg/day) or methotrexate (MTX, 920 mg/kg, twice/week) was orally administered to the mice from the day of arthritis onset. After administration for 30 days, degree of ankle joint destruction and serum levels of IgG and inflammatory cytokines were determined. The balance of Th17/Treg cells in the spleen and lymph nodes was analyzed using flow cytometry. Moreover, the expression levels of retinoic acid receptor-related orphan nuclear receptor (ROR) γt and phosphorylated STAT3 (pSTAT3, Tyr705) in the spleen were detected by immunohistochemistry. Furthermore, the effect of SF on Th17 cells differentiation in vitro was investigated in CD4+ T cells under Th17 polarization conditions. RESULTS: SF decreased the arthritis score, ameliorated paw swelling, and reduced cartilage loss in the joint of CIA mice. In addition, SF decreased the levels of bovine collagen-specific IgG in sera of CIA mice. SF decreased the levels of inflammatory cytokines (TNF-α, IL-6, and IL-17A) and increased the level of IL-10 both in the sera and the joint of CIA mice. Moreover, SF treatment rebalanced the Th17/Treg ratio in the spleen and lymph nodes of CIA mice. SF also reduced the expression levels of ROR γt and pSTAT3 (Tyr705) in the spleen of CIA mice. In vitro, SF treatment reduced Th17 cell generation and IL-17A production and inhibited the expression of RORγt, IRF4, IL-17A, and pSTAT3 (Tyr705) under Th17 polarization conditions. CONCLUSIONS: Our results suggest that SF exhibits anti-arthritic effects and restores Th17/Treg homeostasis in CIA mice by inhibiting Th17 cell differentiation.

17.
Front Pharmacol ; 12: 655081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995075

RESUMO

Lacking estrogen increases the risk of atherosclerosis (AS) in postmenopausal women. Inflammation plays a vital role in the pathological process of AS, and macrophages are closely related to inflammation. Catalpol is an iridoid glucoside extracted from the fresh roots of the traditional Chinese herb Rehmanniae radix preparata. In this study, we aimed to evaluate the effects of catalpol on macrophage polarization and postmenopausal AS. In addition, we investigated whether the mechanism of catalpol was dependent on regulating the expression of estrogen receptors (ERs). In vitro, lipopolysaccharides (LPS) and interferon-γ (IFN-γ) were applied to induce M1 macrophage polarization. In vivo, the ApoE-/- mice were fed with a high-fat diet to induce AS, and ovariectomy was operated to mimic the estrogen cessation. We demonstrated catalpol inhibited M1 macrophage polarization induced by LPS and INF-γ, and eliminated lipid accumulation in postmenopausal AS mice. Catalpol not only suppressed the inflammatory response but also reduced the level of oxidative stress. Then, ERs (ERα and ERß) inhibitors and ERα siRNA were also applied in confirming that the protective effect of catalpol was mediated by ERα, rather than ERß. In conclusion, catalpol significantly inhibited macrophage polarization and prevented postmenopausal AS by increasing ERα expression.

18.
J Tradit Chin Med ; 41(2): 227-235, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825402

RESUMO

OBJECTIVE: To evaluate the efficacy of Liuwei Dihuang formula ( LWDHF) on endothelial cells, and to study the mechanism behind the action of modulating expression of estrogen receptors. METHODS: Hydrogen peroxide (H2O2) was applied to induce the apoptosis of human umbilical vein endothelial cells (HUVECs). The concentration of nitric oxide (NO), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) were measured by assay kits. Western blot and real-time polymerase chain reaction (RT-PCR) were used to detect the expression of iNOS, eNOS, b-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), estrogen receptor (ER) α and ERß. Also, small interfering RNA (siRNA) was involved to confirm whether the protective effects of LWDHF was medicated by ERs. In vivo, the female rats were ovariectomized to establish postmenopausal vascular injury model. Then the model rats were divided into three groups and treated with saline, estradiol and LWDHF respectively. The concentration of NO and NOS in serum were measured by assay kits, and the expression of Bax, Bcl-2, ERα and ERß were detected by western blot and immunohistochemistry. RESULTS: In vitro study, LWDHF significantly protected HUVECs from H2O2-induced apoptosis, with the increase of Bcl-2 and the decrease of Bax. The treatment with LWDHF inhibited concentration of NO and iNOS, and upregulated the expression of eNOS, ERα and ERß. In addition, ERα siRNA could block the protective effects of LWDHF, while ERß siRNA showed little influence. In vivo, the treatment with LWDHF suppressed the vascular injury and reduced the level of NO and NOS. LWDHF increased the expression of Bcl-2, ERα and ERß, as well as inhibiting the Bax expression. CONCLUSION: LWDHF could improve endothelial function and protect HUVECs from apoptosis via increasing the expression of ERα.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Gut Microbes ; 13(1): 1-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691599

RESUMO

Atherosclerosis (AS) is exacerbated in the perimenopausal period, which significantly increases the incidence rate of cardiovascular disease. The disruption of the gut microbiota has been associated with AS or menopause, but the specific changes of AS-associated gut microbiota in the perimenopausal period remain largely unknown. As lipid abnormalities are mainly responsible for AS, the relationship between lipid metabolism abnormalities and gut microbiota disruptions during menopause is rarely reported hitherto. In the present study, ApoE-/- mice fed with a high-fat diet (HFD) were subjected to ovariectomy and supplemented with estrogen. The ovariectomized HFD-fed ApoE-/- mice underwent significant AS damage, hepatic lipid damage, hyperlipidemia, and changes of lipid metabolism- and transport-related enzymes. There was significantly higher abundance of some lipid metabolites in the plasma of ovariectomized HFD-fed ApoE-/- mice than in non-ovariectomized ones, including cholesterol esters, triglycerides, phospholipids, and other types of lipids (free fatty acids, acylcarnitine, sphingomyelins, and ceramides). The administration of estrogen significantly reduced the contents of most lipid metabolites. The diversity and composition of gut microbiota evidently changed in ovariectomized HFD-fed ApoE-/- mice, compared to HFD-fed ApoE-/- mice without ovariectomy. In contrast, with estrogen supplementation, the diversity and composition of gut microbiota were restored to approach that of non-ovariectomized HFD-fed ApoE-/- mice, and the relative abundances of some bacteria were even like those of C57BL/6 mice fed with a normal diet. On the other hand, the transplantation of feces from C57BL/6 mice fed with normal diet to ovariectomized HFD-fed ApoE-/- mice was sufficient to correct the hyperlipidemia and AS damage, and to reverse the characteristics changing of lipid metabolomics in ovariectomized HFD-fed ApoE-/- mice. These phenomena were also been observed after transplantation of feces from estrogen-treated ovariectomized HFD-fed ApoE-/- mice to ovariectomized HFD-fed ApoE-/- mice. Moreover, the gut microbiota and lipid metabolites were significantly correlated, demonstrating that the changes of serum lipids may be associated with the gut microbiota disruptions in the perimenopausal period. In conclusion, the gut microbiota during the progression of AS in the perimenopausal period showed specific compositional changes and significant correlations with circulating lipid metabolites. Estrogen supplementation may exert beneficial effects on gut bacteria and lipid metabolism.


Assuntos
Aterosclerose/microbiologia , Aterosclerose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Perimenopausa , Animais , Bactérias/crescimento & desenvolvimento , Dieta Hiperlipídica , Progressão da Doença , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Lipídeos/sangue , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia
20.
J Cell Physiol ; 236(9): 6154-6167, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33507545

RESUMO

Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Animais , Comunicação Celular , Colesterol/metabolismo , Esterificação , Células Espumosas/metabolismo , Humanos , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...